RFVIFW # Carotid webs: a review of diagnosis and management strategies in current literature Ahmad M, 1,2 Tan M, 1,2 Abuargoub M,3 Patel K1, Siracusa F,4 Shalhoub J, 1,2 Davies AH1,2 - Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, London, UK - 2. Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, UK - 3. Imperial School of Medicine, Imperial College London, London, UK - 4. London Northwest University Healthcare NHS Trust, London, UK # **Corresponding author:** Manal Ahmad Specialty Registrar and Clinical Research Fellow, Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, 4th Floor, North Wing, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK Email: mahmad1@ic.ac.uk Received: 29th January 2025 Accepted: 18th February 2025 Online: 28th February 2025 ### **Plain English Summary** Why we undertook the work: Carotid webs are small protrusions on the inside of blood vessels in the neck where clots can form and lead to a stroke. They are a rare cause for strokes in young people and can be difficult to diagnose. We undertook this review to look at the current research on how this is being treated globally. What we did: We evaluated existing evidence in the literature on the diagnosis, management and outcome of carotid webs. What we found: We found a mix of low- and medium-quality evidence, which suggests there is no clear guideline on the best way to manage carotid webs at present. Options include treating with medication which thins the blood, keyhole surgery to put stents in the blood vessel or open surgery. What this means: There is no clear evidence about which option is better and when this should be done, and further studies are needed. It would be useful to establish a worldwide registry so that data can be standardised and evidence improved. # **Abstract** Introduction: Carotid webs (CaW) are non-atherosclerotic fibrous bands which present as shelf-like linear intraluminal filling defects at the carotid bulb or internal carotid artery. They are a known cause of cryptogenic strokes. Current management includes medical, interventional (stenting) and surgical approaches. Aims: The aim of this review was to systematically evaluate the existing evidence in the literature on the diagnosis, management and outcomes of carotid webs. Methods: This review was performed in accordance with the Preferred Reporting for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A combination of the medical subject headings (MeSH) terms "carotid web", "carotid shelf", "CaW", "web vessels", "Intraluminal web" and "cryptogenic stroke", "ischaemic stroke", "embolic stroke of undetermined source" was utilised in the primary search. Basic descriptive statistical analysis was completed using IBM's Statistical Package for the Social Sciences (SPSS) statistics software, version 29. Results: 123 articles met the criteria and underwent data extraction. This included two registry reviews, 13 cohort studies, 20 case series and 73 case reports. The articles spanned from 1967 to 2024. A pooled total of 771 patients were included (registry and cohort studies n=559; case series/case reports n=212). A higher prevalence of CaW is reported in young female patients and in patients of Afro-Caribbean origin. Symptom recurrence is reduced following intervention in the form of stenting or open surgery in a subset of patients. There is little evidence on the management of asymptomatic CaW. Conclusions: Current literature on CaW lacks homogeneity and is mostly anecdotal in nature. Previous studies have focused on diagnosis, with emerging cohort studies in the last decade evaluating management options. Further large-scale studies are needed. Establishing a worldwide registry will allow standardisation of the data collected and evaluated. Improving the quality of evidence available will help to guide management. Key words: carotid web, carotid artery, cryptogenic stroke, endarterectomy #### Introduction Carotid Webs (CaW) are non-atherosclerotic fibrous bands which present as shelf-like linear intraluminal filling defects, often on the posterior wall of the carotid bulb or the proximal internal carotid artery, causing turbulent flow (Figures 1-5).¹⁻⁴ The condition was first described by Ehrenfeld in 1967 and is often referred to as atypical fibromuscular dysplasia due to the fibrosis and hyperplastic changes seen in the intimal layer on Figure 2 Intraoperative appearance of a Carotid Web. Figure 3 Carotid Web appearance on duplex ultrasonography. histology.^{3,5,6} CaW are difficult to diagnose on imaging and are increasingly being recognised as a source of cryptogenic stroke. The CaW shelf serves as an area for accumulation of thrombus with a risk of subsequent embolisation, resulting in large vessel occlusion and subsequent ischaemic strokes.7-9 A high index of suspicion should be considered in cases where no other source for the transient ischaemic attack (TIA) or stroke has been identified. CaW are still underdiagnosed due to the imaging challenges and a general lack of awareness of this pathology. Current literature suggests that CaW have a higher prevalence in young individuals (age <60 years), female patients and individuals of African descent. 1,10-15 Current management options may include conservative medical management, carotid artery stenting (CAS) or surgical intervention in the form of carotid endarterectomy (CEA) and web resection with or without patchplasty or segmental resection.8 Figure 4 Carotid Web on computed tomography. Figure 5 Carotid Web on angiography. #### Aim The aim of this review was to evaluate existing evidence in the literature on the diagnosis, management and outcomes of carotid webs ### Methods This review was performed in accordance with the Preferred Reporting for Systematic Reviews and Meta-Analyses (PRISMA) statement. The literature was searched using Embase and Medline (via Ovid interface), Web of Science, Scopus and CINAHL databases. A combination of the medical subject headings (MeSH) terms "carotid web", "carotid shelf", "CaW", "web vessels", "Intraluminal web" and "cryptogenic stroke", "ischaemic stroke", "embolic stroke of undetermined source" and "stroke" was utilised in the primary search strategy. Randomised controlled trials, cohort studies, cross-sectional studies, observational studies, case series and case reports on the subject of CaW were included. Studies were limited to those written in the English language. No time limit was placed for the search and articles up to 2024 were included. The exclusion criteria consisted of studies where only the prevalence or incidence was reported, abstracts, letters and conference papers. The abstract and title screening and full text review was completed using the Covidence software by two reviewers (MAh, KP, MT). Data extraction was completed by four reviewers (MAh, MT, MAb, FS). The extracted information included the author, year of publication, type of study, number of patients, age, gender, ethnicity, presenting complaint, co-morbidities, initial investigations, investigation findings, territory of stroke/TIA, National Institute of Health Stroke Scale (NIHSS) score, ipsilateral/contralateral disease, acute management, long-term management, histology and outcome. Basic descriptive statistical analysis was completed using IBM's Statistical Package for the Social Sciences (SPSS) statistics software, version 29. # Results Some 4,017 articles were initially identified and they are summarised in Figure 6. After de-duplication, 3,297 articles underwent title and abstract screening and of these 3,035 were excluded. 261 articles were assessed for eligibility. 123 articles met the criteria and underwent data extraction. They included two registry reviews, 13 cohort studies, 20 case series and 73 case reports. The articles spanned the period from 1967 to 2024. A pooled total of 771 patients were included (registry and cohort studies n=559; case series/case reports n=212). 3,6,17-105 The findings are summarised in Tables 1-4. Further details of each case series and case report are available to view in Appendix 1 (online at www.jvsgbi.com). There was a higher prevalence of CaW reported in female patients (n=521) compared to male patients (n=295). Forty-four case reports did not describe the gender. The mean age of presentation was 43.7 years (range 29-93 years) across the case series and reports. The mean age range across the pooled registry/cohort studies was between 44-59 years. Fifty-five patients had concurrent bilateral carotid webs. 3,25,38, 42,47,49,67,106-109 Only a third of the articles reported the ethnicity. A higher prevalence was reported in individuals of African descent, who represented 21% of the patient cohort (Afro-Caribbean n=101, African-American n=50, African n=14), followed by 10.5% of Caucasians (n=81). Other reported ethnicities included Asian (1.29%), Middle Eastern (0.52%) and Hispanic (0.52%). Where reported, almost 9% of the 212 patients (n=19) from the case series/case reports had a series of recurring symptoms at the time of presentation and diagnosis, although the time frame for these was not clear. All other reported cases were | Table 1 Short su
Studies included – | - | dings and intervention, where reported | | | |--|----------------|---|---|--| | 2 Registry reviews 13 Cohort studies | . 559 patients | Initial acute management Medical management (n=238) Thrombolysis (n=41)
Thrombectomy (n=50) Reperfusion not otherwise specified (n=106) Decompressive hemicraniectomy (n=7) | Subsequent/Definitive management | 55 patients – Bilateral Carotid Webs 6 patients – | | 20 Case Series 73 Case reports | - 212 patients | Initial acute management Medical management (n=103) Thrombolysis (n=9) Thrombectomy (n=18) Thrombolysis and thrombectomy (n=8) Carotid artery stenting (n=18) and surgical (n=38) Not reported (n=23 cases) | Subsequent/Definitive management Unchanged (n=118) Carotid artery stenting (n=28) Surgical (n=58) Further thrombectomy (n=1). | known fibromuscular dysplasia No recurrence of symptoms after definitive management | | Age | 43.7 years (range 29-93) | |----------------|---| | Sex | 71.66% - Female patients (n= 521)
22.64% - Male patients (n=295)
5.7% - Gender not reported | | Ethnicity | 21% - African/Afro-Caribbean (n=165) | | Co-morbidities | 0.77% - Fibromuscular dysplasia
10.6% - Hypertension
5.45% - Hyperlipidaemia
3.3% - Diabetes | emergent or semi-emergent cases presenting with symptoms in the preceding hours or days. From the symptomatic case reports, 79% presented with TIA and 58.9% had stroke symptoms. There were 20% which did not specify the presentation or had atypical symptoms. The NIHSS score at presentation was provided in 54 case reports. The mean score was 7.7 at presentation (range 0-25). Six patients had a known pre-existing diagnosis of fibromuscular dysplasia. 2.17,18,22.26,47,53,110 The most commonly co-morbidities, where reported, were hypertension in 10.6% of the cohort, followed by hyperlipidaemia in 5.45% and diabetes in 3.3%. All studies and case reports initially managed CaW with medical management or thrombolysis/thrombectomy. ^{2,106-119} However, further intervention with either stenting or surgery was required in a subset which comprised almost half the patient group who had | series/case re | ports | | |-----------------------|--|---------------| | Initial
management | Medical management (Dual antiplatelet therapy or high dose | 48.5% (n=103) | | _ | single antiplatelet therapy) | | | | Thrombolysis | 4.2% (n=9) | | | Thrombectomy | 8.5% (n=18) | Table 3 Short summary of reported management in case Thrombolysis + thrombectomy 3.8% (n=8) Carotid artery stenting 8.5% (n=18) 17.9% (n=38) Surgical Not reported 10.8% (n=23) Definitive/ Carotid artery stenting 13.2% (n=28) 27.3% (n=58) Subsequent Surgical management Thrombectomy 0.47% (n=1) Unchanged 55.6% (n=118) symptom recurrence or as a means to definitive management of the CW. ^{2,106,108,109,111,112,115,116,119} Of the 212 cases reported, the initial acute management included medical management with dual antiplatelet therapy or a high-dose single antiplatelet agent in 48.5% of the reported cases (n=103). 4.2% underwent thrombolysis (n=9), 8.5% underwent thrombectomy (n=18), 3.8% had thrombolysis and thrombectomy (n=8), 8.5% had carotid artery stenting (n=18) and 17.9% had surgical intervention (n=38). Initial management was not reported in 23 of the 212 cases. Subsequent, definitive management remained unchanged in more than 55.6% of the patients. However, further interval intervention included carotid artery stenting 13.2% (n=28), surgical 27.3% (n=58) and further thrombectomy 0.47% (n=1). None of the patients reported further symptoms following further definitive management. Forty-five cases reported the intra-operative histology from the tissue samples sent. These are summarised in Table 5. Common findings included subintimal/intimal fibrosis (n=32) and medial muscular hyperplasia (n=12) and to a lesser degree, adventitial fibrosis (n=2). Associated thrombus was reported in 11 cases and arterioscleosis or plaques were mentioned in seven cases. | | | ce = onth onths). In all yels: ence at the context of | Jia | | | | continued | | |-------------------------------------|---------------------------------|---|----------------------------------|---|---|---|--|--| | | Outcome | Median time to recurrence = 12 months (earliest 1 month and all others after ≥6 months). Kaplan–Meier survival analysis: 1-, 2-, and 3-year recurrence rates in medically treated patients were 20% (95% confidence interval, 2.6–37.4), 27.3% (95% confidence interval, 6.3–48.3), and 36.4% (95% Ct, 11.7–61.1). No recurrence in CEA patients. | Post-operative bradycardia (n=3) | No further symptoms | No further symptoms | | One death | | | | Definitive
Management | 1 Recurrent
presentation
underwent CEA.
Surgical removal
(7/25 patients) | CAS | All underwent
stenting + DAPT for
3 months followed
by SAPT | | | 1/30 - CEA after
failining medical
management | | | | Recurrence | 3/20- major strokes
(NIHSS>10),
2/20 minor strokes
(NIHSS<10),
1/20 TIA | | 20 strokes; 4 TIA's (7 recurrent prior to stenting) | | 6 CEA
1 CAS | | | | | Acute
Management | Medical management (20/25 patients) | 3-5 days of Ticagrelor | 24/24 - Initial medical
management;
11/24 - Thrombolysis;
13/24 - Thrombectomy | 13 - Supportive care NOS; 8 Stenting; 2 CEA; Aspirin and ticagrelor for 6 months then SAPT (Aspirin) up to 18 months. | Medical management -
Aspirin | 28/30 - Medical
management (15 on
SAPT/ 8 on DAPT/ 4
on Warfarin/ 1 on
DOAC) | | | | Other
patient
descriptors | N. | NR | NR | N | 5/6 no significant
cardiovascular
disease risk
factors, 1/6
Hypertension,
Hypertipidaemia,
Former smoker,
1/6 Fibromuscular
Dysplasia | R | | | | Ethnicity | 25 Airo-
Caribbean | NR | 17 African
American;
7 Caucasian | NR | 4 African
American;
1 Hispanic;
1 Caucasian | R | | | | Gender
[Female:
Male] | 15F:9M | 3F:1M | 14F: 10M | 10F:9M | 5F:1M | 22F: 8M | | | | Age
[in years] | Mean: 45.7±6.5 | Mean: 44
(range 30-50) | Median: 47
[IQR 41-61] | Mean: 50
(range 29-82) | Mean: 55 ± SD
12.6 (min 43,
max 79) | Median: 57
[IQR 46-66] | | | included | Number
of
patients | 25 | 4 | 24 | 20 | 45 (7 had CaW, 15.6%) | 30 | | | Table 4 Summary of studies included | Type of study | Cohort | Cohort | Cohort | Cohort | Cohort | Registry | | | ummary o | Year | 2014 | 2018 | 2018 | 2018 | 2020 | 2021 | | | Table 4 Si | Author | (111) | Brinjikji <i>et al</i>
(112) | Haussen
et al (113) | Pereira
<i>et al</i> (114) | Haynes et al. (110) | Guglielmi
et al (107) | | | | | | | | | pan | |---|---------------------------------|---|---|---|---|---| | | Outcome | | Modified Rankin Scale - 4 excellent outcome; 10 good outcome; 1 poor outcome.
§§No deaths | | | сопіпива | | | Definitive
Management | | | 14/20- CAS | x2 CAS
x1CEA | | | | Recurrence | 54% CEA (n=27)
46% CAS (n=23) | 5/11 CAS
1/11 CEA | - short term
atients had at least one
5 CaW stenting or on
he annual recurrence
was 11,4% (95% CI | | | | | Acute
Management | All patients started on DAPT on diagnosis of ischaemic stroke + anticoagulation in 2 patients | 7/11Thrombolysis;
4/11 Medical
management with
antiplatelets; | 21/21- antiplatelet, 5/21- short term anticoagulation - 4/20 patients had at least one stroke recurrence before CaW stenting or on medical management. The annual recurrence rate on medical therapy was 11,4% (95% CI [8.4–15.1] | x1 Thrombolysis; + Medical management for all patients (Aspirin 100mg + Clopidogrel 75mg + Atorvastatin 40mg) | 4/14 (28.6%) CEA
5/14 (35.7%) CaS
5/14 (35.7%) Aspirin
alone | | | Other
patient
descriptors | 23 (85%) Hypertension, 14 (52%) Dyslipidaemia, 5 (19%) Atrial Fibrillation, 4 (15%) Diabetes Mellitus, 5 (19%) Smokers, 3 (11%) Myocardial Infarction, 8 (30%) ischaemic heart disease) | NR | NR | NR | 25/86
Hypertension
14/86
Hyperlipidaemia
1/86 Atrial
Fibrillation
5/86 Diabetes
Mellitus
31/86 Smoker
7/86 FMD | | | Ethnicity | X
X | 7 Sub saharan
African;
3 North African;
1 Caucasian | 1 Asian,
16 Caucasian,
1 African/
Caucasian,
3 Middle eastern | N
N | N
N | | | Gender
[Female:
Male] | 16F:11M | 6F:5M | 11F:10M | 2F:6M | 47F.39M
(both
groups) | | Table 4 Summary of studies included (continued 1) | Age
[in years] | Mean: 66.70
years ± SD
14.34 | Median: 47
[IQR 38-50] | Mean: 50.6
+/-9.2 | Mean: 50.75
(range 38-65) | Mean - stroke group 48.3 ± SD 9.9; Mean - asymptomatic group 46.4 ± 14.8 | | included (| Number
of
patients | 181 (27
had CaW,
14.9%) | | 21 | 8 (6
presented
with acute
ischaemic
stroke) | 86 patients (all with CW, 14/86 acute ischaemic stroke, 72/86 asympto- matic) | | of studies | Type of
study | Cohort | Cohort | Cohort | Cohort | Cross-
sectional
study | | ımmary (| Year | 2021 | 2021 | 2021 | 2021 | 2022 | | Table 4 Su | Author | Rzepka <i>et al</i>
(115) | Semerano
et al (108) | Turpinat <i>et al</i>
(109) | Zhu <i>et al</i>
(106) | Tabibian et al (2) | | | Outcome | No recurrence at median follow-up of 9 months (Inter quartile range 6-20 months) | 33.3% anticoagulation (DOAC 85.7%, vitamin K antagonist 14.3%), 61.9% SAPT, 3.6% DAPT, 1.2% antiplatelet and anticoagulation; 4 patients had no further treatment (patient decision) | | When managed medically with DAPT + statin +/- anticoagulation for 10 patients, all suffered ipsilateral recurrent strokes; after intervention with a mean duration of 38 months, no post-intervention stroke or death | lealth Stroke Scale; | |---|---------------------------------|--|--|---|---|---| | | Definitive
Management | 9/17 CAS
1/17 CEA | 80/110 - CAS
30/110 - CEA
4/32 Contralateral
CW's underwent
Carotid Artery
Stenting | CAS | When managed medi
anticoagulation for 1C
recurrent strokes; afte
duration of 38 month
death | HSS – National Institutes of P | | | Recurrence | | | | | quartile range; M – Male; NII | | | Acute
Management | management | 106/185 - treatment of reperfusion; 21/185 thrombolysis; 37/185 thombolysis and mechanical thrombectomy; 7/185 decompressive hemicraniectomy | Dual antiplatelets | All patients started on DAPT on diagnosis of ischaemic stroke + anticoagulation in 2 patients; 54% CEA (n=27), 46% CAS (n=23), 2 strokes nil intervention | CAS — Carotid Artery Stenting; CaW — Carotid Artery Stenting; DAPT — Dual Antiplatelet. Therapy; DOAC — Direct Oral Anticoagulant, F — Female; IQR — Interquantile range; M — Male; NIHSS — National Institutes of Health Stroke Scale; NR — Not Reportect, SAPT — Single antiplatelet therapy; SD - Sandard Deviation; TIA — Transient Ischaemic Attack. | | | Other
patient
descriptors | 76.5% Hypertension 5.9% Dyslipidaemia 47.1% Diabetes Mellitus 11.8% Coronary artery disease 35.3% Previous | R | NR | R | AC – Direct Oral Anticoag | | | Ethnicity | NR | 47.5%
Caucasian,
20.3% Afro-
Caribbean | N
N | 67% Afro-
Caribbean | iplatelet Therapy; DO
aemic Attack. | | | Gender
[Female:
Male] | 4F:13M | 62.9% F | 73.3% F | 71% F | j; DAPT – Dual An
IA – Transent Isch | | Table 4 Summary of studies included (continued 2) | Age
[in years] | Mean age
59.41 years
±SD 10.86 years | 50.8+/-12.2 | Mean 51.2 | (range 29-73) | sarotid Artery Stenting.
Standard Deviation; TI | | included (| Number
of
patients | 77 (all had CaW) | 202 (32
with
contralateral
CaW) | 118 (88 athero-sclerotic disease, 30 CaW) | 25 | d Web; CEA – C et therapy; SD - : | | of studies | Type of study | Cohort | Registry | Cohort
(2014-
2021) | Cohort
(2016-
2022) | g; CaW – Cant
Single antiplatel | | ummary | Year | 2022 | 2023 | 2023 | 2024 | orted; SAPT – | | Table 4 S | Author | (116) | Olindo <i>et al</i> (1) | Osehobo
et al (117) | Brinster et al. (118) | CAS – Carotid
NR – Not Repot | Table 5 Summary of histology findings; 45 cases reported histology findings from intra-operative samples sent | Findings | Number of patients | |--------------------------------|--------------------| | Subintimal/Intimal Fibrosis | 32 | | Medial Muscular Hyperplasia | 12 | | Adventitial Fibrosis | 2 | | Arteriosclerosis or Plaque | 7 | | Thrombus | 11 | | Myxoid degeneration | 8 | | Inflammatory cell infiltration | 3 | | Dissection | 3 | Other histological findings included myxoid degeneration (n=8), inflammatory cell infiltration (n=3) and dissection (n=3). Myxoid degeneration results in the accumulation of mucin in tendons, ligaments and fibrocartilage and its presence in CaW warrants further research to gain an understanding of the underlying pathology of CaW formation. A single peri-partum case with bilateral CaW was also reported in a 39-year-old female with a history of ocular symptoms five years prior to presenting with left arm weakness. This was managed successfully with dual antiplatelet therapy, switched to low molecular weight heparin in the late third trimester and six weeks following delivery. Further statistical analysis was not possible owing to missing data as well as the overall heterogeneity of the data available. # **Discussion** CaW are increasingly being recognised as a source of stroke for which no other causes may be identified leading to large vessel occlusion, particularly in younger patients. 42,119 Current imaging modalities include duplex ultrasonography, computed tomography angiography and high-resolution magnetic resonance angiography: however, CaW can be difficult to detect. 103,106,116 Barriers to diagnosis include lack of awareness and diagnosis with respect to imaging interpretation. Lesion identification can take up to four and a half months after initial stroke symptoms in as many as a quarter of patients. 1 CT angiography appears to be the most commonly used imaging modality in diagnosing and reporting CaW. 1,106,107 Duplex ultrasonography can be helpful as it provides information on the morphology of the CaW and can highlight haemodynamic changes, especially thrombus formation, but requires experience and expertise. 106 The literature comprises predominantly case reports and case series, with cohort and cross-sectional studies emerging in the last decade. The true prevalence of CaW remains unknown. Registries such as MR CLEAN in the Netherlands and the CAROWEB in France have helped to shed light on this. 1,15 The CAROWEB registry, comprised of 224 cases, found that CaW were not identified at the time of mechanical thrombectomy in 30 out of the 85 patients. 1 The MR CLEAN registry found a 2.5% prevalence of CaW on the symptomatic side and a 0.5% prevalence on the asymptomatic side in a cohort of 443 cases. ¹⁰⁷ Similar to findings from the pooled evidence in this review, CaW were identified primarily on CTA in female patients in a younger age group. In our pooled cohort of cases series/case reports, symptoms recurred in just under half of all patients, requiring further definitive treatment. The MR CLEAN registry reported a recurrence rate of about 17% over a two-year period. The overall true recurrence rate is therefore not entirely clear. The results from these registries have helped to shape the current iteration of the European Society of Vascular Surgeons current guideline on CaW. The overall underdiagnosis of CaW is a possible factor in the recurrence of symptoms which would otherwise not yield any underlying causes for symptoms during initial investigations. Current management options available include antithrombotic and antiplatelet medication, including aspirin, clopidogrel or a combination of both, and statin use. Immediate management in acute cases where there is evidence of large vessel occlusion with focal neurological changes includes
thrombolysis and/or thrombectomy followed by either medical management or intervention. Carotid artery stenting is a minimally invasive option in patients who may otherwise be high risk or who opt for this option. Dual layer stents show positive results without significant complications. Open surgical intervention can include endarterectomy and patchplasty, or web excision and anastomosis, as described in some reports. In general, there appears to be a higher rate of symptom recurrence in patients managed medically. 11,31,109,111,118,120 The overall time to symptom recurrence varies between 1-97 months, with another study citing a median 12 months to symptom recurrence. 31,111 An annual symptom recurrence rate of up to 11.4% has been reported in patients on medical therapy alone. 109,111 Other studies reported that their cohort of patients with CaW presenting with transient ischaemic attacks progressed to cerebral infarction within three months of medical management in almost two-thirds of the cases. 121 No further symptoms were reported after definitive intervention in the form of carotid artery stenting or carotid endarterectomy. 106,111-113,115,116,117,120 The risks and side effects associated with intervention also need to be considered and balanced with the frequency of symptom recurrence and future risk of symptom recurrence and risk of stroke. This also needs to be balanced with potential advances in endovascular methodology. The timing of definitive intervention also varies vastly and seems to be dependent on a number of factors, including symptom recurrence and surgeon preferences. There seems to be a general lack of consensus in managing concurrent contralateral CaW without symptoms. The CAROWEB registry reported invasive intervention (primarily carotid stenting) in four of the 32 patients with contralateral CaW, which appears to show a slightly higher intervention rate for contralateral CaW in the US.^{4,120} Consideration must also be given to the management of asymptomatic carotid webs which may be detected incidentally. # **KEY MESSAGES** - Carotid webs remain underdiagnosed and should be looked for in cases of stroke of undetermined cause - The risk of symptom recurrence is generally high when managed medically. Definitive management options include carotid stenting or open surgery - There is no clear guideline on how asymptomatic and concurrent bilateral carotid webs should be managed - Establishing a registry will allow further research into this area Little is known as to when CaW may occur, whether there is an embryological component and why symptoms present in young patients before the age of 60 but not earlier if CaW have been present for a long period. This also prompts the question as to whether these should be expectantly managed medically and whether early intervention could offset any potential risk of stroke in future. The optimal timing of any definitive intervention in asymptomatic patients also warrants further exploration. The European Society of Vascular Surgeons current guideline on CaW recommends that for "symptomatic patients with a carotid web in whom no other cause for stroke can be identified after detailed neurovascular work up, carotid endarterectomy or carotid artery stenting may be considered to prevent recurrent stroke".8 This is based on Level C evidence, given the lack of consistent and sufficient data, and has been highlighted as an area warranting further research.8,122 At present, these patients are managed on a case by case basis, with involvement of relevant specialities including radiologists, stroke physicians and vascular surgeons. There are also differing opinions on whether these cases should be managed with stenting or surgery as definitive management. The current UK National Vascular Registry (NVR) reports data on patients undergoing carotid stenting and carotid endarterectomy and/or patchplasty. However, it does not report data on CaW and this in part may be due to the underdiagnosis or overall prevalence. Perhaps establishing a worldwide registry would allow uniformity in global reporting and help to establish the true incidence as well as allowing follow-up of the management and outcomes in these cases? #### Conclusion Current literature on CaW lacks homogeneity and is mostly anecdotal in nature. Previous studies have focused on diagnosis, with emerging cohort studies in the last decade evaluating management options. Symptom recurrence is reduced following intervention in a subset of patients. However, the literature on the management of asymptomatic CaW is very limited. **Conflict of Interest:** The authors declare that there are no conflicts of interest. **Funding:** Funding for this review was provided by the Imperial College London's BRC research funding for infrastructural support. **Data availability:** The data that support the findings of this study are available from the corresponding author upon reasonable request. **Author contributions:** AD, MAh – project design and conceptualisation; MAh, MT, MAb, FS – data collection; MAh – data analysis; MAh – drafted the manuscript; JS, AD – senior critical review of drafts. All authors approved the final version of this review. Reviewer acknowledgement: JVSGBI thanks Mr Dominic PJ Howard, Consultant Vascular Surgeon, Oxford University Hospitals NHS Trust; Noman Shahzad – ST8 Vascular Surgery Trainee Yorkshire and Humber and Gareth James Harrison, Consultant Vascular Surgeon, Countess of Chester Hospital, for their contribution to the peer review of this work. #### References - Olindo S, Gaillard N, Chausson N, Turpinat C, et al. Clinical, imaging, and management features of symptomatic carotid web: Insight from CAROWEB registry. Int J Stroke 2024;19(2):180-8. https://doi.org/10.1177/17474930231204343 - Tabibian BE, Parr M, Salehani A, et al. Morphological characteristics of symptomatic and asymptomatic carotid webs. J Neurosurg 2022; 137(6):1727-32. https://doi.org/10.3171/2022.2.JNS212310 - Multon S, Denier C, Charbonneau P, et al. Carotid webs management in symptomatic patients. J Vasc Surg 2021;73(4):1290-7. https://doi.org/10.1016/j.jvs.2020.08.035 - Kim SJ, Allen JW, Bouslama M, et al. Carotid webs in cryptogenic ischemic strokes: a matched case-control study. J Stroke Cerebrovasc Dis 2019; 28(12):104402. https://doi.org/10.1016/j.jstrokecerebrovascdis.2019.104402 - Ehrenfeld WK, Stoney RJ, Wylie EJ. Fibromuscular hyperplasia of the internal carotid artery. *Arch Surg* 1967;95(2):284-7. https://doi.org/10.1001/archsurg.1967.01330140122027 - Calle La Rosa P, Ecos R, Otiniano-Sifuentes RD, et al. Carotid web diagnosed by ultrasound carotid duplex in a patient with ischemic stroke. Cureus 2021; 13(7):e16330. https://doi.org/10.7759/cureus.16330 - Marnat G, Holay Q, Darcourt J, et al. Dual-layer carotid stenting for symptomatic carotid web: results from the Caroweb study. J Neuroradiol 2023; 50(4):444-8. https://doi.org/10.1016/j.neurad.2022.12.005 - Naylor R, Rantner B, Ancetti I, et al. European Society for Vascular Surgery (ESVS) 2023 clinical practice guidelines on the management of atherosclerotic carotid and vertebral artery disease. Eur J Vasc Surg 2023;65(1):7-111. https://doi.org/101016/jejvs202204011. - Coutinho JM, Derkatch S, Potvin ARJ, et al. Carotid artery web and ischemic stroke: a case-control study. Neurology 2017;88(1):65-9. https://doi.org/10.1212/WNL.0000000003464 - Yang T, Yoshida K, Maki T, et al. Prevalence and site of predilection of carotid webs focusing on symptomatic and asymptomatic Japanese patients. J Neurosurg 2021;135(5):1370-6. https://doi.org/10.3171/2020.8.JNS201727 - Olindo S, Chausson N, Signate A, Mecharles S, Hennequin JL, Saint-Vil M. Stroke recurrence in first-ever symptomatic carotid web: a cohort study. Stroke 2021; 23(2):253-62. https://doi.org/10.5853/jos.20020.05225 - Mei J, Chen D, Esenwa C, et al. Carotid web prevalence in a large hospital-based cohort and its association with ischemic stroke. Clin Anat 2021;34(6):867-71. https://doi.org/10.1002/ca.23735 - Landzberg D, Nogueira RG, Al-Bayati AR, et al. Baseline characteristics of patients with symptomatic carotid webs: a matched case control study. J Stroke Cerebrovasc Dis 2021;30(8):105823. https://doi.org/10.1016/j.jstrokecerebrovascdis.2021.105823 - Sharashidze V, Nogueira RG, Al-Bayati AR, et al. Carotid web phenotype is uncommonly associated with classic fibromuscular dysplasia: a retrospective observational study. Stroke 2022;53(2):e33-e36. https://doi.org/10.1161/STROKEAHA.121.036188 - Compagne KCJ, van Es ACGM, Berkhemer OA, et al. Prevalence of carotid web in patients with acute intracranial stroke due to intracranial large vessel occlusion. Radiology 2018;286(3):1000-7. https://doi.org/10.1148/radiol.2017170094 - Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 2021; - **372**:n160. https://doi.org/10.1136/bmj.n160 - Connett MC, Lansche JM. Fibromuscular hyperplasia of the internal carotid artery: report of a case. *Ann Surg* 1965;**162**(1):59-62. https://doi.org/10.1097/00000655-19507000-00010 - Rainer WG, Cramer GG, Newby JP, Clarke JP. Fibromuscular hyperplasia of the carotid artery causing positional cerebral ischemia. *Ann Surg* 1968;167(3):444. https://doi.org/10.1097/00000658-196803000-00021 - Gee W, Burton R, Stoney RJ. Atypical fibromuscular hyperplasia involving the carotid artery. *Ann Surg* 1974;**180**(1):136-8. https://doi.org/10.1097/00000658-197407000-00021 - Lipchik EO, DeWeese JA, Schenk EA, Lim GH. Diaphragm-like obstructions of the human arterial tree. *Radiology* 1974;**113**(1):43-6. https://doi.org/10.1148/113.1.43 - Osborn AG, Anderson RE. Angiographic spectrum of cervical and intracranial fibromuscular dysplasia. Stroke 1977;8(5):617-26. https://doi.org/10.1161/01.str.8.5.617 - So EL, Toole JF, Moody DM, Challa VR. Cerebral embolism from septal fibromuscular dysplasia
of the common carotid artery. *Ann Neurol* 1979;6(1): 75-8. https://doi.org/10.1002/ann.410060120 - Wirth FP, Miller WA, Russell AP. Atypical fibromuscular hyperplasia: report of two cases. J Neurosurg 1981;54(5):685-9. https://doi.org/10.3171/jns.1981.54.5.0685 - Kliewer MA, Carroll BA. Ultrasound case of the day. Internal carotid artery web (atypical fibromuscular dysplasia). Radiographics 1991;11(3):504-05. https://doi.org/10.1148/radiographics.11.3.1852941 - Kubis N, Von Langsdorff D, Petitjean C, et al. Thrombotic carotid megabulb: fibromuscular dysplasia, septae, and ischemic stroke. Neurology 1999;52(4): 883-6. https://doi.org/10.1212/wnl.52.4.883 - Morgenlander JC, Goldstein LB. Recurrent transient ischemic attacks and stroke in association with an internal carotid artery web. *Stroke* 1991;22(1):94-8. https://doi.org/10.1161/01.str.22.1.94 - Gironell A, Martí-Fàbregas J, de Juan-Delago M, Lloret D, Fernandez-Villa J, Martí-Vilalta J. Carotid pseudo-valvular fold: a probable cause of ischaemic stroke. J Neurol 1995;242:351-3. https://doi.org/10.1007/BF00878882 - Lenck S, Labeyrie M-A, J Mosimann P, Saint-Maurice J-P, Houdart E. Diaphragm of the internal carotid artery: a novel cause of pulsatile tinnitus. *J Neurol* 2013; 260:2185-7. https://doi.org/10.1007/s00415-013-7045-5 - Lenck S, Labeyrie MA, Saint-Maurice JP, Tarlov N, Houdart E. Diaphragms of the carotid and vertebral arteries: an underdiagnosed cause of ischaemic stroke. *Eur J Neurol* 2014;**21**(4):586-93. https://doi.org/10.1111/ene.12343 - Fu W, Crockett A, Low G, Patel V. Internal carotid artery web: Doppler ultrasound with CT angiography correlation. J Radiol Case Rep 2015;9(5):1. https://doi.org/10.3941/jrcr.v9i5.2434 - Choi PMC, Singh D, Trivedi A, et al. Carotid webs and recurrent ischemic strokes in the era of CT angiography. Am J Neuroradiol 2015;36(11):2134-9. https://doi.org/10.3174/ajnr.A4431 - 32. Choi HY, Kim S, Park JW, et al. Implication of circulating irisin levels with brown adipose tissue and sarcopenia in humans. *J Clin Endocrinol Metabolism* 2014; **99**(8):2778-85. https://doi.org/10.1210/jc.2014-1195 - Choi YJ, Jung SC, Lee DH. Vessel wall imaging of the intracranial and cervical carotid arteries. *J Stroke* 2015; 17(3):238. https://doi.org/10.5853/ios.2015.17.3.28 - Elmokadem AH, Ansari SA, Sangha R, Prabhakaran S, Shaibani A, Hurley MC. Neurointerventional management of carotid webs associated with recurrent and acute cerebral ischemic syndromes. *Interv Neuroradiol* 2016;22(4):432-7. https://doi.org/10.1177/159101991663245 - Phair J, Trestman EB, Yean C, Lipsitz EC. Endarterectomy for a symptomatic carotid web. Vascular 2017;25(5):553-6. https://doi.org/10.1177/1708538116684940 - Martinez-Perez R, Lownie SP, Pandey SK, Boulton MR. Stent placement for carotid web. World Neurosurg 2017;98:879.e9-e879;e11. https://doi.org/10.1016/j.wneu.2016.11.050 - Sajedi PI, Gonzalez JN, Cronin CA, et al. Carotid bulb webs as a cause of "cryptogenic" ischemic stroke. Am J Neuroradiol 2017;38(7):1399-404. https://doi.org/10.3174/ajnr.A5208 - Smyth H, Byrne D, Hayden D, Eoin K, Murphy S. A cause of recurrent strokes: carotid webs detected by CT angiogram. BJR Case Rep 2018;4(1). https://doi.org/10.1259/bjrcr.20170066 - 39. Antiguedad-Munoz J, de la Riva P, Arenaza Choperena G, et al. Internal carotid - artery web as the cause of recurrent cryptogenic ischemic stroke. *J Stroke Cerebrovasc Dis* 2018;**27**(5):e86-e87. - https://doi.org/10.1016/j.jstrokecerebrovascdis.2017.12.012 - Pacei F, Quillici L, Mullin S, et al. Web of the carotid artery: an under-recognized cause of ischemic stroke. J Clin Neurosci 2018;50(dpi, 9433352):122-3. https://doi.org/10.1016/j.jocn.2018.01.059 - Vercelli GG, Campeau NG, Macedo TA, Dawson ET, Lanzino G. De novo formation of a carotid web: case report. *J Neurosurg* 2018;**131**(5):1481-4. https://doi.org/10.171/2018.7.JNS181579 - Wojcik K, Milburn J, Vidal G, Steven A. Carotid webs: radiographic appearance and significance. *Ochsner J* 2018;**18**(2):115-20. https://doi.org/10.31486/toj.18.0001 - Dudhiya U, Poliditis V, Ko D, Agarwal A. A carotid web as a rare cause of ischaemic stroke: a case report. *Clin Med (London)* 2019;**19**(Supplement 3):2. https://doi.org/10.7861/dlinmedicine.19-3s-s2 - 44. Gouveia EE, Mathkour M, Bennett G, Valle-Giler EP. Carotid web stenting. Ochsner J 2019; 19(1):63-6. https://doi.org/10.314861/toj.18.0143 - Jennewine B, de Grijs D, Sharma A, Williams C. Carotid web treated with web excision and patch angioplasty. *Vascular Medicine* 2019;24(4):369-70. https://doi.org/10.1177/1358863X19839142 - Mac Grory B, Cheng D, Doberstein C, Jayaraman MV, Yaghi S. Ischemic stroke and internal carotid artery web. *Stroke* 2019;**50**(2):e31-e34. https://doi.org/10.1161/STROKEAHA.118.024014 - Sajedi P, Chelala L, Nunez-Gonalez J, et al. Carotid webs and ischemic stroke: experiences in a comprehensive stroke center. J Neuroradiol 2019;46(2):136-40. https://doi.org/10.1016/j.neurad.2018.09.003 - Bennani H, Alami B, Hajjar C, et al. Symptomatic carotid web: about a rare ultrasound finding. J Med Vasc 2020;45(5):284-7. https://doi.org/10.1016/j.jdmv.2020.06.004 - Hassani S, Nogueira RG, Al-Bayati AR, Kala S, Philbrook B, Haussen DC. Carotid webs in pediatric acute ischemic stroke. *J Stroke Cerebrovasc Dis* 2020; 29(12):105333. https://doi.org/10.1016/j.jstrokecerebrovascdis.2020.105333 - Liu H, Wang W, Xing X, Shi J, Wang X, Li W. Cryptogenic stroke secondary to rare carotid web? *Neurology India* 2020;**68**(1):176-8. https://doi.org/10.4103/0028-3886.279656 - Krasteva MP, Diamantaras AA, Siller T, Mordasini P, Heldner MR. Symptomatic carotid web in a female patient. SAGE Open Med Case Rep 2020; 8(101638686):2050313X20940540. https://doi.org/10.1177/2050313X20940540 - Ning B, Zhang D, Sui B, He W. Ultrasound imaging of carotid web with atherosclerosis plaque: a case report. *J Med Case Rep* 2020;**14**(1):145. https://doi.org/10.1186/s13256-020-02446-1 - Ozaki D, Endo T, Suzuki H, et al. Carotid web leads to new thrombus formation: computational fluid dynamic analysis coupled with histological evidence. Acta Neurochir (Wien) 2020;162(10):2583-8. https://doi.org/10.1007/s00701-020-04272-2 - Priyadarshni S, Neralla A, Reimon J, Smithson S. Carotid webs: an unusual presentation of fibromuscular dysplasia. *Cureus* 2020;12(8):e9549. https://doi.org/10.7759/cureus.9549 - Ren T, Sun S, Qu X, Gao Y. Carotid web misdiagnosis. World Neurosurg 2020; 140 (101528275):128-30. https://doi.org/10.1016/j.wneu.2020.04.091 - Watanabe S, Matsumoto S, Nakahara I, et al. A case of ischemic stroke with congenital protein C deficiency and carotid web successfully treated by anticoagulant and carotid stenting. Front Neurol 2020; 11 (101546899):99. https://doi.org/10.3389/fneur.2020.00099 - Borghese O, Pisani A, Di Centa I. Surgical treatment of carotid webs in symptomatic young adults. *Ann Vasc Surg* 2021;**72**(avs, 8703941):350-5. https://doi.org/10.1016/j.avsg.2020.09.054 - Bouchal S, Lamrani YA, Chtaou N, Maaroufi M, Belahsen F. Repeated intravenous thrombolysis in early recurrent stroke secondary to carotid web: case report. *Radiol Case Rep* 2021;**16**(4):843-6. https://doi.org/10.1016/j.radcr.2021.01.026 - Essibayi MA, Nasr D, Lanzino G. Bilateral carotid webs. *Neuroradiology J* 2021; 34(6):683-5. https://doi.org/10.1177/19714009211017783 - Gao Q, Hu S, Yang X, Wang J, Lu J, Wang D. Histologic differences between in situ and embolized carotid web thrombi: a case report. *BMC Neurol* 2021; 21(1):398. https://doi.org/10.1186/s12883-021-02428-w - Gao M, Lei J. Image and clinical analysis of common carotid web: a case report. BMC Med Imaging 2021;21(1):1. https://doi.org/10.1186/s12880-020-00536-6 - 62. Giammello F, Dell'Aera C, Cotroneo M, et al. Intravenous thrombolysis and three - mechanical thrombectomies in 15 days in a patient with carotid web: a case report. *SN Comprehensive Clin Med* 2021;**3**(2):710-4. https://doi.org/10.1007/s42399-021-00793-8 - Mathew S, Davidson DD, Tejada J, Martinez M, Kovoor J. Safety and feasibility of carotid revascularization in patients with cerebral embolic strokes associated with carotid webs and histopathology revisited. *Interv Neuroradiol* 2021;27(2):235-40. https://doi.org/10.1177/1591019920980271 - Mehra R, Patra V, Dhillan R. Carotid artery web with fetal posterior cerebral artery variant masquerading as recurrent ipsilateral cryptogenic ischaemic strokes. *BMJ Case Rep* 2021;**14**(12). https://doi.org/10.1136/bcr-2021-246421 - Mi X, Zhao Y, Shu J. A case of cryptogenic ischemic stroke caused by a carotid web. Acta Neurol Belg 2021;121(6):1847-9. https://doi.org/10.1007/s13760-020-01326-1 - Ono K, Arimura K, Nishimura A, et al. Carotid artery stenting for carotid web resistant to medical treatment. *Interdisciplinary Neurosurgery* 2021;24:101067. https://doi.org/10.1016/j.inat.2020.101067 - Thomas EH, Woodward S, Ahmad S. Managing pregnancy-related stroke risk with known bilateral internal carotid artery webs. *Obstetric Medicine* 2021;**17**(1):63-5. 1177/1753495X211037910https://doi.org/10. - Yin J, Wang W, Song Z, et al. Embolectomy of acute embolic stroke associated with ipsilateral carotid web: a case report and literature review. J Internat Medical Res 2021;49(11):3000605211059929. https://doi.org/10.1177/0300605211059929 - Zhiyong Z, Yanan T, Pugang L, Weiwen Q, Genlong Z, Lin X. The pathogenic mechanism of carotid web causing the recurrent stroke. *Neurology India* 2021; 69(5):1483-4. https://doi.org/10.4103/0028-3886.329610 - Alnajjar M, Imam YZ, Akhtar N, Habas E, Zakaria A. Carotid web stent for the prevention of recurrent stroke: case report and literature review. *Clin Case Rep* 2022;**10**(2):e05473. https://doi.org/10.1002/ccr3.5473 - Charifi Y, Bouchal S, Sekkat G, et al. Recurrent stroke in young adults caused by atypical fibromuscular carotid dysplasia. Radiol Case Rep 2022;17(10):4034-42. https://doi.org/10.1016/j.radcr.2022.07.081 -
Gillgren P, Skioldebrand C. Large symptomatic carotid web in young African-Swedish man. J Vascular Surg Cases Innov Tech 2022;8(1):119-20. https://doi.org/10.1016/j.jvscit.2021.11.009 - Gour A, Elefant E, Fanadka F, Kestenbaum M, Lev N. Carotid web: an occult etiology of stroke in the young. *Isr Medical Assoc J* 2022;24(8):546-8. - Hadwen J, Wang A, Bebedjian R, Fahed R, Walker G. Caught red-handed: angiography reveals large thrombus in carotid web of stroke patient. *Can J Neurol Sci* 2022;49(4):593-4. https://doi.org/10.1017/cjn.2021.182 - Ishikawa K, Shindo K, Endo H, et al. The endothelialization on carotid web treated with dual layer stent placement: a case report. Radiol Case Rep 2022; 17(10):3855-8. https://doi.org/10.1016/j.radcr.2022.07.089 - Khaladkar SM, Dilip D, Arkar R, Chanabasanavar V, Lamghare P. A case of carotid web: cause of stroke in healthy and young patients. SA J Radiol 2022; 26(1):2291. https://doi.org/10.4102/sair.v26i1.2291 - Kodankandath TV. Delayed thrombus on carotid web: case report with escalation of treatment. *Neurohospitalist* 2022;12(2):352-4. https://doi.org/10.1177/19418744211058940 - El Mesnaoui R, Nikiema S, Massimbo D, El Mesnaoui A. The carotid diaphragm, an often overlooked cause of stroke by cardiologists. *J Surg Case Rep* 2022; 2022(7). https://doi.org/10.1093/jscr/rjac350 - Miranda M, Sousa S, Pita F, Carmona C. Carotid web causing recurrent ischaemic stroke. *Pract Neurol* 2022;22(2):156-7. https://doi.org/10.1136/practneurol-2021-003188 - Oushy S, Flemming KD, Cloft H, Savastano LE. Use of intravascular optical coherence tomography to confirm the diagnosis of a carotid web in a patient with recurrent ipsilateral embolic strokes and evaluate the response to stenting. *Interv Neuroradiol* 2023;**29**(2):217-21. https://doi.org/10.1177/15910199221080878 - Rodriguez-Castro E, Arias-Rivas S, Santamaria-Cadavid M, et al. Carotid web: the challenging diagnosis of an under-recognized entity. J Neurol 2022;269(10): 5629-37. https://doi.org/10.1007/s00415-022-11210-y - Schutt CD, Pesquera JJ, Renati S, Kaplan DJ, Mokin M, Rose DZ. Web browsing: high-speed diagnosis and treatment of carotid artery web. *Neurohospitalist* 2022; 12(3):498-503. https://doi.org/10.1177/19418744221096650 - Shen X, Bai J, Wang C, Ji X, Yin R, Qu L. A case report of ischemic stroke with a carotid web successfully treated by carotid endarterectomy. *Ann Vascular Surg - Brief Reports Innovations* 2022;**2**(1):100053. https://doi.org/10.1016/j.avsurg.2022.100053 - 84. Zhang H, Deng J, Guo Y, He Y. A carotid web with atherosclerotic plaque. *Ann Neurol* 2022;**92**(5):902-3. https://doi.org/10.1002/ana.26508 - Zhang H, Sun N, He Y. Transient ischemic attack due to dynamic evolution of carotid artery web. *Neurol Sci* 2023;44(9):3353-4. https://doi.org/10.1007/s10072-023-06816-7 - Assid E, Hall C, Samad M, Zweifler R. Carotid web as a source of thromboembolism in a young African American female. *Ochsner J* 2024; 24(1):87-9. https://doi.org/10.31486/toj.23.0082 - De Lorenzo A, Lazzarin SM, Bertini A, Divenuto I, Marcheselli S, Pensato U. Carotid free-floating thrombus stemming from carotid web: co-occurrence of two rare causes of ischemic stroke. *BMC Neurol* 2023;23(1):399. https://doi.org/10.1186/s12883-023-03448-4 - 88. Fanning NF, Manning BJ. Thromboembolism from carotid web. *Radiology* 2023; **306**(3):e221504. https://doi.org/10.1148/radiol.221504 - Faye I, Mbodji AB, Niang FG, et al. Atypical fibromuscular dysplasia or carotid web revealed by cerebral infarction: a review of 2 cases. Radiology Case Rep 2023;18(8):2545-8. https://doi.org/10.1016/j.radcr.2023.04.030 - Kamatani K, Yoshida S, Tashiro N, et al. The case of treatment for carotid web -Double-layer micromesh stent implantation in our hospital. Surgical Neurol Int 2023;14(101535836):339. https://doi.org/10.25259/SNI_525_2023 - Kasashima K, Fujimoto M, Tani S, et al. Symptomatic atherosclerotic plaque accompanied by carotid web. Neuroradiol 2023;36(2):220-3. https://doi.org/10.1177/19714009221122192 - Kawahara Y, Zahra S, Isaza F, Yacoub H, Ju M. Carotid web as an embolic source of acute ischemic stroke. *Neurologist* 2023;28(3):187-9. https://doi.org/10.1097/NRL.0000000000456 - Lkharrat FZ, Bouchal S, Bennani H, et al. Management of a recurrent stroke due to a carotid web. J Med Vasc 2023;48(3-4):136-41. https://doi.org/10.1016/j.jdmv.2023.08.002 - Naito Gomi M, Iwasaki K, Sasaki I. Carotid web arising in the common carotid artery and adjacent to a transverse process of the cervical spine: a case report. *Neuroradiology J* 2023;37(4):513-17. https://doi.org/10.1177/19714009231212371. - Radu RA, Cagnazzo F, Derraz I, et al. Use of optical coherence tomography in selected patients with recurrent cryptogenic stroke: a case series and technical discussion. *Interv Neuroradiol* 2025;31(1):88-94. https://doi.org/10.1177/15910199221150472. - Vukasovic R, Pintaric M, Lovrencic-Huzjan A. Headache as a symptom of carotid web. Arch Psych Res 2023;59(1):133-6. https://doi.org/10.20471/May.2023.59.01.19 - Wang Y, Li H-L, Xu X-H, Ye J-H, Li J. New asymptomatic thrombosis caused by carotid web during the acute period of cerebral infarction. *BMC Neurol* 2023; 23(1):264. https://doi.org/10.1186/s12883-023-03316-1 - Wang M, Zhou R, Zhao H, et al. Imaging and clinical features of cervical artery web: report of 41 cases and literature review. Acta Neurol Belg 2021; 121(5): 1225-33. https://doi.org/10.1007/s13760-020-01353-y - Xu W, Song G, Bai X, Jiao L. Cerebral infarction caused by coexisting elongated styloid process and carotid web. *J Stroke Cerebrovasc Dis* 2023;32(5):107088. https://doi.org/10.1016/j.jstrokecerebrovasdis.2023.107088 - 100. Yang G-M, Zhang R-W, Li H-G, Liu Y-M. Recurrent stroke shortly after mechanical thrombectomy secondary to carotid web: a case report. *Medicine* 2023;**102**(50): e36561. https://doi.org/10.1097/MD.000000000036561 - 101. Yin J, Wei Y. Carotid web with an ulcerated plaque. *Radiology* 2023;**309**(3): e231946. https://doi.org/10.1148/radiol.231946 - 102. Zelada-Rios L, Barrientos-Iman D, Simbron-Ribbeck L, et al. Importance of multiplanar reformation angiographic images for the detection of carotid web: a case series. Brain Circ 2023;9(1):44-7. https://doi.org/10.4103/bc_75_22 - 103. Zhang J, Yan Y, Yao W, Liu J, Cui L. Multimodality imaging of carotid web: a case report and literature review. *Vascular* 2023;**31**(4):699-707. https://doi.org/10.1177/17085381221084809 - 104. Mutlu U, Fokkink WJR, van Kooten F. Shifting carotid web due to a wandering and rotating carotid artery. *JAMA Neurol* 2024(101589536). https://doi.org/10.1001/jamaneurol.2023.5641 - 105. Kyaw K, Latt H, Aung SSM, Babu J, Rangaswamy R. A rare case of carotid web presenting with ischemic stroke in a young woman and a brief review of the literature. Case Rep Med 2018;2018(101512910):3195679. https://doi.org/10.1155/201813195679 - 106. Zhu C, Li Z, Ju Y, Zhao X. Detection of carotid webs by CT angiography, high-resolution MRI, and ultrasound. *J Neuroimaging* 2021;**31**(1):71-5. - https://doi.org/10.1111/jon.12784 - 107. Guglielmi V, Compagne KCJ, Sarrami AH, et al. Assessment of recurrent stroke risk in patients with a carotid web. JAMA Neurol 2021;78(7):826-33. https://doi.org/10.jamaneurol.2021.1101 - 108. Semerano A, Mamadou Z, Desilles JP, et al. Carotid webs in large vessel occlusion stroke: clinical, radiological and thrombus histopathological findings. J Neurol Sci 2021;427(jbj, 0375403):117550. https://doi.org/10.1016/j.jns.2021.117550 - 109. Turpinat C, Collemiche FL, Arquizan C, et al. Prevalence of carotid web in a French cohort of cryptogenic stroke. J Neurol Sci 2021;427(jbj, 0375403): 117513. https://doi.org/10.1016/j.jns.2021.117513 - 110. Haynes J, Raz E, Tanweer O, et al. Endarterectomy for symptomatic internal carotid artery web. J Neurosurg 2020;135(1):1-8. https://doi.org/10.3171/2020.5.JNS201107 - 111. Joux J, Chausson N, Jeannin S, et al. Carotid-bulb atypical fibromuscular dysplasia in young Afro-Caribbean patients with stroke. Stroke 2014; 45(12): 3711-13. https://doi.org/10.1161/STROKEAHA.114.007313 - 112. Brinjilkji W, Agid R, Pereira VM. Carotid stenting for treatment of symptomatic carotid webs: a single-center case series. *Interv Neurol* 2018;**7**(5):233-40. https://doi.org/10.1159/000486537 - 113. Haussen DC, Grossberg JA, Koch S, et al. Multicenter experience with stenting for symptomatic carotid web. *Interv Neurol* 2018;**7**(6):413-18. https://doi.org/10.1159/000489710 - 114. Pereira BJA, Batista UC, Tosello RT, Stroher IN, Baeta AM, Piske RL. Web vessels: literature review and neurointerventional management. World Neurosurgery 2018; 110:e907-e16. https://doi.org/10.1016/j.wneu.2017.11.115 - 115. Rzepka M, Chmiela T, Bosowska J, Cebula M, Krzystanek E. Fibromuscular dysplasia/carotid web in angio-CT imaging: a rare cause of ischemic stroke. *Medicina (Kaunas, Lithuania)* 2021;**57**(10):1112. https://doi.org/10.3390/medicina57101112 - 116. Zhou Q, Li R, Feng S, et al. The value of cntrast-enhanced ultrasound in the evaluation of carotid web. Frontiers Neurol 2022;13(101546899):860979. https://doi.org/10.3389/fneur.2022.860979 - 117. Osehobo EM, Nogueira RG, Karunamuni N, et al. Comparative analysis of stenting for carotid web and atherosclerotic disease. *Interv Neuroradiol* 2023(9602695):15910199231188856. https://doi.org/10.1177/15910199231188856 - 118. Brinster CJ, O'Leary J, Hayson A, et al. Symptomatic carotid webs require aggressive intervention. J Vasc Surg 2024;79(1):62-70. https://doi.org/10.1016/j.jvs.2023.09.002 - 119. Alzubaidi L, Al-Amidie M, Al-Asadi A, et al. Novel transfer learning approach for medical imaging with limited labeled data. Cancers 2021;13(7):1590. https://doi.org/10.3390/cancers13071590 - 120. Olindo S, Chausson N, Signate A, et al. Stroke recurrence in first-ever symptomatic carotid web: a cohort study. J Stroke 2021;23(2):253-62. https://doi.org/10.5853/jos.2020.05225 -
121. Hu H, Zhang X, Zhao J, Li Y, Zhao Y. Transient ischemic attack and carotid web. AJNR Am J Neuroradiol 2019;40(2):313-18. https://doi.org/10.3174/ajnr.A5946 - 122. Labeyrie M-A, Serrano F, Civelli V, et al. Carotid artery webs in embolic stroke of undetermined source with large intracranial vessel occlusion. Int J Stroke 2021; 16(4):392-5. https://doi.org/10.1177/1747493020929945 # **Appendix/Supplementary Material** | Author | Year | Study
Type | Numb
er of
patie
nts | Age | Gend
er | Ethnicity | Presenting
Complaint | Co-
morbidities | Famil
y
Histor
y | Smoki
ng
Status | NIHSS | Acute
Managem
ent | Acute
Management
[details] | Definitive
Managem
ent | Definitive
Management
[Details] | |------------------------|------|----------------|-------------------------------|-----|------------|---------------|--|--|---------------------------|-----------------------|-------|-------------------------|--|------------------------------|--| | Ehrenfeld
et al (5) | 1967 | Case
report | 1 | 57 | F | Caucasia
n | Left sided
hemiplegia +
intermittent
dizziness | Hypertensio
n, Bilateral
thoracolumb
ar
sympathecto
my, | NR | NR | NR | Surgical | 1st Operation -
Right CEA +
carotid resection +
end to end
anastomosis | Surgical | Surgical: 2nd
Operation 2
weeks later - Left
carotid resection
and end to end
antomosis | | Connett et
al (17) | 1965 | Case
report | 1 | 34 | F | Caucasia
n | Right sided
weakness,
aphasia,
facial
weakness | Fibromuscul
ar
hyperplasia | NR | NR | NR | NR | NR | Surgical | L ICA- attempted
open
thrombectomy
(could not remove
clot); R ICA -
Carotid resection | | Rainer et
al (18) | 1968 | Case
report | 1 | 30 | F | NR | 3 month
history of
nocturnal
right
hemiparesis | Fibromuscul
ar dysplasia | NR | NR | NR | NR | NR | Surgical | Carotid web excision and patch | | Gee et al
(19) | 1974 | Case
report | 1 | 38 | M | NR | 12 hour
history of
right
hemiparesis
with complete
resolution | NR | NR | NR | NR | NR | NR | Surgical | Proximal 2 cm of
the internal
carotid artery
containing the
lesion resected +
autologous
interposition
saphenous vein
graft. | | Lipchick et
al (20) | 1974 | Case
series | Case
1 | 50 | M | NR | Transient ischaemic stroke symptoms NOS | NR | NR | NR | NR | NR | NR | Surgical | Surgical | | | | | Case
2 | 55 | M | NR | Transient severe dizziness | NR | NR | NR | NR | NR | NR | Surgical | Surgical | | | | | Case
3 | 58 | M | NR | Transient aphasia + blindness | NR | NR | NR | NR | NR | NR | Surgical | Surgical | | | | | Case
4 | 78 | М | NR | Transient blindness | NR | NR | NR | NR | NR | NR | Surgical | Surgical | | | | | Case
5 | 72 | M | NR | Transient
blindness
over 2 years | NR | NR | NR | NR | NR | NR | Surgical | Surgical | | Osborn et al (21) | 1977 | Case report | 1 | 45 | F | NR | Multiple TIAs
NOS | NR | NR | NR | NR | NR | NR | Surgical | Surgical | | So et
al (22) | 1979 | Case report | 1 | 47 | F | African
American | Initial presentation - Left hemiparesis + aphasia + facial weakness and numbness. Represented almost 12 months later - left central facial palsy and left hemiparesis | High BMI,
fibromuscula
r dysplasia | NR | NR | NR | Medical
managem
ent | Medical
management NOS | Surgical | CEA on representation | |---------------------|------|----------------|-----------|----|---|---------------------|---|--|----|----|----|---------------------------|---------------------------|-----------|--| | Wirth et
al (23) | 1981 | Case
series | Case
1 | 57 | M | African
American | Left sided
transient
weakness
and sensory
loss + carotid
bruit | None | NR | NR | NR | Medical
managem
ent | Aspirin and dipyridamole | Surgical | CEA 5 weeks
later | | | | | Case
2 | 71 | M | African
American | Severe headad
sided weaknes
bruit | | NR | NR | NR | NR | NR | Surgical | CEA 4 weeks
later | | Kliewer et al (24) | 1991 | Case report | 1 | 34 | F | NR | Cerebral
Infarct | NR | NR | NR | NR | Surgical | Endarterectomy | NR | NR | | Kubis et
al (25) | 1991 | Case
series | Case
1 | 37 | F | African | Right facial
paresis +
motor
aphasia,
frontal lobe
syndrome | NR | NR | NR | NR | Medical
managem
ent | Anticoagulation | Surgical | Surgical: excision
of septum and
reconstruction of
megabulb | | | | | Case
2 | 44 | M | African | Mild left sided
hemiparesis
+ left sensory
extinction +
left
hemianopsia.
Represented
12 months
later with left
hemiplegia. | NR | NR | NR | NR | Medical
managem
ent | Aspirin | No change | Oral
anticoagulation | | | | | Case 3 | 38 | M | African | Left sided
hemiplegia
with intense
headache +
left
hemianopsia
+ bilateral
Babinski
sign.
Comatose
requiring
intubation | NR | NR | NR | NR | NR | Patient died on admission | NR | N/A | | | | | | | | | and ventilation | | | | | | | | | |--------------------------------|------|--------------------------|-----------|----|---|----------------------------|--|---|------|---------------------------------|----|---|----------------------------------|---------------|--| | Morgenlan
der et
al (26) | 1991 | Case
report | 1 | 34 | F | Caucasia
n | Lightheadedn
ess, facial
droop,
speech
difficulty and
right sided
weakness | Fibromuscul
ar dysplasia;
on oral
contraceptiv
es | None | Smoke
r (15
pack
year) | NR | Medical
managem
ent | Warfarin | Surgical | CEA 6 weeks
later + 325mg of
Apsirin daily | | Gironell et
al (27) | 1994 | Case
report | 1 | 29 | F | Asian
(Philippin
es) | Sudden loss
of strength in
left limbs | NR | NR | NR | NR | Medical
managem
ent | Aspirin 300 mg
daily | Surgical | Arteriotomy (2 weeks later) | | Lenck et
al (28) | 2013 | Case
series | Case
1 | 64 | F | NR | Pulsatile
tinnitus +
bruit | NR | NR | NR | NR | NR | NR | Interventiona | l radiology - stenting | | | | | Case
2 | 58 | F | NR | Pulsatile
tinnitus +
bruit | NR | NR | NR | NR | NR | NR | Interventiona | l radiology - stenting | | Lenck et
al (29) | 2014 | Case
report | Case
1 | 52 | F | NR | NR | 2
cardiovascul
ar risk
factors NOS | NR | NR | NR | Interventio
nal
radiology -
stenting | Stenting | No change | | | | | | Case
2 | 43 | F | NR | NR | NR | NR | NR | NR | Interventio
nal
radiology -
stenting | Stenting | No change | | | Fu et
al (30) | 2015 | Case
report | 1 | 76 | F | Caucasia
n | Syncope | CABG (4
weeks
earlier), MI,
hypertensio
n,
hyperlipidae
mia,
pancytopeni
a, excess
alcohol | NR | Smoke
r (50
pack
year) | NR | Medical
managem
ent | Medical
management NOS | No change | | | Choi et
al (31) | 2015 | Retrospec
tive series | Case
1 | 47 | М | NR | Stroke NOS | Vascular
risk factors
NOS | NR | NR | NR | Surgical | On aspirin prior to representing | No change | | | | | | Case
2 | 68 | М | NR | TIA | NR | NR | NR | NR | Medical
managem
ent | NR | No change | | | | | | Case
3 | 78 | F | NR | Stroke NOS | NR | NR | NR | NR | Medical
managem
ent | NR | No change | | | | | | Case
4 | 74 | М | NR | Stroke NOS | Vascular
risk factors
NOS | NR | NR | NR | Medical
managem
ent | NR | No change | | | | | | Case
5 | 67 | F | NR | Migraine | Vascular
risk factors
NOS | NR | NR | NR | Medical
managem
ent | NR | No change | | | | | | Case
6 | 55 | F | NR | Left
hemispheric
TIA | Vascular
risk factors
NOS | NR | NR | NR | Medical
managem
ent | NR | No change | | | | | | Case
7 | 49 | F | NR | Stroke NOS | NR | NR | NR | NR | Medical
managem
ent | NR | No change | | |--------------------|------|------------------------|------------|----|---|---------------|---|---------------------------------|----|----|----|---------------------------|--|-----------|--| | | | | Case
8 | 57 | М | NR | Peripheral vertigo | NR | NR | NR | NR | Surgical | On aspirin prior to representing | No change | | | | | | Case
9 | 64 | M | NR | Benign
neurological
event | NR | NR | NR | NR | Medical
managem
ent | NR | No change | | | | | | Case
10 | 59 | F | NR | Reversible
cerebral
vasoconstricti
on syndrome | NR | NR | NR | NR | Medical
managem
ent | NR | No change | | | | | | Case
11 | 53 | F | NR | Stroke NOS | NR | NR | NR | NR | Medical
managem
ent | NR | No change | | | | | | Case
12 | 59 | М | NR | Stroke NOS | Vascular
risk factors
NOS | NR | NR | NR | Surgical | On aspirin prior to representing | No change | | | | | |
Case
13 | 51 | М | NR | Stroke NOS | Vascular
risk factors
NOS | NR | NR | NR | Medical
managem
ent | NR | No change | | | | | | Case
14 | 64 | М | NR | Stroke NOS | Vascular
risk factors
NOS | NR | NR | NR | Medical
managem
ent | On aspirin prior to representing | No change | | | | | | Case
15 | 72 | М | NR | Benign
neurological
event | Vascular
risk factors
NOS | NR | NR | NR | Surgical | On warfarin prior to representing | No change | | | | | | Case
16 | 72 | F | NR | Pneumonia | NR | NR | NR | NR | Medical
managem
ent | NR | No change | | | | | | Case
17 | 66 | F | NR | Stroke NOS | NR | NR | NR | NR | Medical
managem
ent | NR | No change | | | | | | Case
18 | 39 | F | NR | Optic neuritis | NR | NR | NR | NR | Medical
managem
ent | NR | No change | | | | | | Case
19 | 65 | М | NR | Leptomening
eal
metastasis | NR | NR | NR | NR | Medical
managem
ent | NR | No change | | | | | | Case
20 | 90 | F | NR | Stroke NOS | NR | NR | NR | NR | Medical
managem
ent | On aspirin prior to representing | No change | | | | | | Case
21 | 72 | М | NR | Seizure | Vascular
risk factors
NOS | NR | NR | NR | Medical
managem
ent | On warfarin prior to representing | No change | | | Choi et
al (33) | 2015 | Prospectiv
e series | Case
1 | 54 | М | Caucasia
n | x1 Recurrent
stroke | None | NR | No | 11 | Surgical | On aspirin prior to
representing
(stopped 7 days
prior) - Carotid
endarterectomy | No change | | | | | | Case
2 | 59 | F | East
Asian | x3 Recurrent
strokes | Patent
foramen
ovale | NR | No | 11 | Surgical | On DAPT prior to representing - Carotid endarterectomy | No change | | | | | | Case 3 | 44 | F | South
Asian | x1 Recurrent
stroke | None | NR | No | 0 | Medical
managem
ent | On aspirin prior to representing (stopped 7 days prior) | No change | | |----------------------------------|------|----------------|-----------|---------------------|-------------|---------------------|---|------------------------------|----|-----|------|---|---|---|---| | | | | Case
4 | 55 | F | Caucasia
n | x1 Recurrent
stroke | None | NR | No | 14 | Surgical | On clopidogrel prior to representing + Carotid endarterectomy | No change | | | | | | Case
5 | 41 | M | Caucasia
n | x1 Recurrent
stroke | Migraine | NR | No | 2,19 | Surgical | On aspirin prior to representing +Caro tid endarterectomy | No change | | | | | | Case
6 | 49 | F | South
Asian | NR | None | NR | No | 0 | Medical
managem
ent | NR | No change | | | | | | Case
7 | 52 | F | Caucasia
n | NR | None | NR | Yes | 15 | Medical
managem
ent | NR | No change | | | Elmokade
m et al (34) | 2016 | Case
report | Case
1 | 36 | M | NR | Recurrent
neurology
(2nd
presentation
after 2
months)
small vessel
lacunar
infarct | Hypertensio
n | NR | No | NR | Interventio
nal
radiology -
stenting | Medical
management NOS | No Change | Carotid stenting +
aspirin 81mg +
clopidogrel75mg.
Clopidogrel
stopped after 3
months | | | | | Case
2 | 41 | F | NR | Recurrent
neurology 4th
presentation | None | NR | No | NR | Interventio
nal
radiology -
thrombect
omy | Thrombectomy + DAPT | Interventio
nal
radiology -
stenting | Carotid stenting +
post stenting
angioplasty +
aspirin 81mg +
clopidogrel75mg.
Clopidogrel
stopped after 3
months. | | Phair et al
(35) | 2017 | Case
report | 1 | 43 | F | NR | Acute left-
sided
weakness
with a two-
day history of
severe
bilateral
frontal
headache | NR | NR | NR | NR | Surgical | Right carotid
endarterectomy 72
hours after the
initial presentation | No change | Follow-up at 6
and 12 months,
rehabilitation,
follow-up to
monitor her
progress and
functional
restoration | | Martinez-
Perez et
al (36) | 2017 | Case
report | 1 | 47 | F | NR | Left sided
hemiplegia +
dysarthria | Herniated
disc | NR | No | NR | Interventio
nal
radiology -
thrombect
omy | Thrombectomy | Interventio
nal
radiology -
stenting | Carotid stenting +
aspirin 81mg +
clopidogrel75mg | | Sajedi et
al (37) | 2017 | Case
series | Case
1 | Mean
age
38.3 | 1 M;
6 F | Caucasia
n | NR | 2
Hyperlipidae
mia + 3 | NR | NR | NR | Medical
managem
ent | Supportive care -
NOS | No change | | | | | | Case
2 | (SD5.
6) | | African
American | NR | Smokers | NR | NR | NR | Interventio
nal
radiology - | Thrombectomy | No change | | | | | | | | | | | | | | | thrombect | | | | |---------------------|------|----------------|-----------|----|---|---------------------|--|--|----|----|----|---|--|-----------|---| | | | | Case
3 | | | African
American | NR | - | NR | NR | NR | Medical
managem
ent | Supportive care -
NOS | No change | | | | | | Case
4 | | | African
American | NR | | NR | NR | NR | Medical
managem
ent | Supportive care -
NOS | No change | | | | | | Case
5 | | | African
American | NR | | NR | NR | NR | Interventio
nal
radiology -
thrombect
omy | Thrombectomy | Surgical | Carotid
endarterectomy | | | | | Case
6 | | | African
American | NR | | NR | NR | NR | Medical
managem
ent | Supportive care -
NOS | Surgical | Carotid endarterectomy | | | | | Case
7 | | | African
American | NR | | NR | NR | NR | Medical
managem
ent | Supportive care -
NOS | No change | | | Smyth et
al (38) | 2017 | Case
report | Case
1 | 85 | M | Caucasia
n | Right sided
hemiparesis | Hypertensio
n;
Hyperlipidae
mia;
prostate
cancer | NR | No | 6 | Interventio
nal
radiology -
thromboly
sis | Thrombolysis | No change | Aspirin 75mg +
clopidogrel 75mg
+ statin | | | | Case
report | Case
2 | 38 | М | Middle
Eastem | Dense right
sided
hemiparesis
+ facial droop
+ aphasia | Previous
stroke 15
months prior
- SAPT
(clopidogrel) | NR | NR | NR | Interventio
nal
radiology -
Thromboly
sis +
thrombect
omy | Thrombolysis + thrombectomy | No change | Dabigatran
150mg twice a
day + aspirin
75mg once a day
(Note: Patient had
been on
clopidogrel 75mg
previously) | | Kyaw et
al (105) | 2018 | Case
report | 1 | 20 | F | Caucasia
n | Aphasia | None. On
OCP | NR | No | 6 | Medical
managem
ent | Aspirin 300mg + atorvastatin 80mg | No change | Aspirin +
clopidogrel +
atorvastatin | | Munoz et
al (39) | 2018 | Case
report | 3 | 43 | F | NR | x1 Recurrence after 11 months - Transient left hemiparesis initial presentation and on representatio | None | NR | NR | NR | Medical
managem
ent | Initially managed
with DAPT on 1st
presentation | Surgical | Carotid
endarterectomy | | Pacei et
al (40) | 2018 | Case
report | 2 | 36 | F | NR | Frontal
headache;
right upper
limb
hemiplegia +
tingling; right
UMN facial
palsy; mixed | NR | NR | No | NR | Medical
managem
ent | Medical
management
(DAPT - aspirin
100mg +
clopidogrel 75mg) | No change | | | | | | | | | | receptive and expressive aphasia | | | | | | | | | |-------------------------|------|----------------|-----------|----|---|---------------------|--|--|----|----|----|---|--|---|---| | Vercelli et
al (41) | 2018 | Case
report | NR | 47 | M | NR | Episode of
transient
confusion
and perioral
tingling | NR | NR | NR | NR | Interventio
nal
radiology -
thromboly
sis | Intravenous tissue plasminogen activator, dual antiplatelet therapy for 3 months followed by aspirin monotherapy | No change | | | Wojcik et
al (42) | 2018 | Case
Report | Case
1 | 45 | F | NR | Left sided
hemiparesis
+ facial
droop | Previous R
MCA
syndrome 3
years prior
treated with
thrombolysis | NR | NR | NR | Medical
managem
ent | Medical
management -
aspirin 325mg
daily, heparin
5,000 units 8
hourly, atorvastatin
40 mg daily | Surgical | Carotid
endarterectomy +
patchplasty | | | | | Case
2 | 44 | F | NR | Left sided
hemiplegia +
mild
headache +
nausea | NR | NR | NR | NR | Interventio
nal
radiology -
thrombect
omy | Mechanical
thrombectomy | Interventio
nal
radiology -
stenting | Aspirin 325mg +
clopidogrel 75mg
for 3 months
followed by
aspirin only +
40mg atorvastatin | | | | | Case
3 | 52 | F | NR | Slurred
speech +
R
facial droop,
confusion,
word finding
difficulty | NR | NR | NR | NR | Interventio
nal
radiology -
Thromboly
sis | Thrombolysis | No change | Aspirin 81mg +
clopidogrel 75mg
+ atorvastatin 40g | | | | | Case
4 | 47 | M | NR | Left facial
numbness/tin
gling + L
hand tingling | Hyperlipidae
mia | NR | NR | NR | Medical
managem
ent | Aspirin 81mg + clopidogrel 75mg + statin | No change | Dual antiplatelet therpay | | | | | Case
5 | 51 | F | NR | R sided
weakness,
aphasia,
hemianopsia,
facial droop | Hyperlipidae
mia;
lymphoma
(in
remission) | NR | NR | NR | Interventio
nal
radiology -
thrombect
omy | Thrombectomy +
DAPT | Interventio
nal
radiology -
stenting | DAPT for 1 month
followed by
325mg aspirin +
10mg of
atorvastatin | | Dudhiya et
al (43) | 2019 | Case report | 1 | 48 | M | NR | Sudden
onset left-
sided
weakness
and speech
difficulties | NR | NR | NR | NR | Interventio
nal
radiology -
thromboly
sis +
thrombect
omy | Thrombolysis,
transfer to a
tertiary center for
thrombectomy,
carotid stent | Interventiona
stenting | | | Gouveia et
al (44) | 2019 | Case report | 1 | 33 | F | African
American | Left sided
hemiparesis
+ facial
droop | None | NR | No | 9 | Interventio nal radiology - thromboly sis + thrombect omy | Thrombolysis +
thrombectomy | Interventio
nal
radiology -
stenting | Aspirin 81mg + clopidogrel75mg+ atorvastatin10mg. clopidogrel | | Jennewine
et al (45) | 2019 | Case
report | 1 | 48 | F | Caucasia
n | Right upper limb weakness | Protein S
deficiency | NR | NR | NR | Medical
managem
ent | DAPT at 1st presentation | Surgical | Carotid
endarterectomy +
patchplasty | | | | | | | | | and
dysphasia 2
years prior | | | | | | | | | |-------------------------|------|----------------|------------|----|---|---------------------|--|--|----|-----|----|---|---|---|---------------------------| | Mac Grory
et al (46) | 2019 | Case
report | 1 | 67 | M | NR | Left sided
hemiparesis | Hypertensio
n;
hyperlipidae
mia | NR | No | 2 | Medical
managem
ent | 81mg of aspirin daily | Interventio
nal
radiology -
stenting | Recurrence prior to stent | | Sajedi et
al (47) | 2019 | Case
series | Case
1 | 48 | F | Caucasia
n | Left MCA
stroke - right
sided
weakness +
aphasia | Cocaine
use;
fibromuscula
r dysplasia | NR | NR | NR | Medical
managem
ent | Medical
management
(aspirin +
anticoagulation) | No change | | | | | | Case
2 | 45 | M | African
American | Right MCA
stroke -
temporal
headache +
left arm
numbness | NR | NR | NR | NR | Surgical | Carotid
endarterectomy | No change | | | | | | Case
3 | 41 | F | African
American | Left MCA
stroke -right
sided
hemiplegia +
aphasia | Sickle cell | NR | NR | 25 | Interventio
nal
radiology -
thromboly
sis | Thrombolysis | Surgical | Carotid
endarterectomy | | | | | Case
4 | 39 | F | African
American | Left MCA
stroke NOS | | NR | NR | NR | Medical
managem
ent | | No change | | | | | | Case
5 | 35 | F | African
American | Right MCA
stroke - left
sided
hemiplegia +
slurred
speech | Diabetes
mellitus | NR | Yes | NR | Medical
managem
ent | | No change | | | | | | Case
6 | 46 | М | African
American | Right MCA
stroke NOS | | NR | NR | NR | Medical
managem
ent | | No change | | | | | | Case
7 | 28 | F | African
American | Left MCA
stroke NOS | | NR | NR | NR | Medical
managem
ent | | No change | | | | | | Case
8 | 52 | M | Hispanic | Incidental
finding - left
sided
sensory
changes | | NR | NR | NR | NR | | No change | | | | | | Case
9 | 54 | F | African
American | Incidental
finding -
asymptomati
c | | NR | NR | NR | NR | | No change | | | | | | Case
10 | 37 | F | African
American | Incidental
finding -
syncope | Lumbar
laminectomy
and sural
repair | NR | NR | NR | NR | | No change | | | | | | Case
11 | 41 | F | African
American | Chronic left
MCA | | NR | NR | NR | Medical
managem
ent | | No change | | | | | | Case
12 | 48 | М | African
American | Chronic left
MCA | | NR | NR | NR | Surgical | Carotid
endarterectomy
(CEA) | No change | | |------------------------|------|----------------|------------|-------------------|----|---------------------|--|--|------|-----|----|---|---|-----------|---------------------------| | | | | Case
13 | 37 | F | African
American | Chronic right M
sided hemipleg | | NR | NR | NR | Medical
managem
ent | | No change | | | | | | Case
14 | 37 | F | African
American | NR | | NR | NR | NR | NR | | No change | | | Vercelli et
al (41) | 2019 | Case report | 1 | 47 | М | NR | Episode of transient confusion and perioral tingling, acute-onset left upper motor neuron facial paresis, dysarthria, and left hand paresthesias two years later | NR | NR | NR | NR | Interventio
nal
radiology -
thromboly
sis | Intravenous tissue plasminogen activator (tPA), dual antiplatelet therapy for 3 months, aspirin monotherapy, neurological examination was normal after 2 hours following the administration of intravenous tissue plasminogen activator | No change | | | Bennani et
al (48) | 2020 | Case
report | 1 | 54 | М | NR | Right sided
hemiplegia +
aphasia +
homonymous
lateral
hemianopia | None | NR | No | NR | Interventio
nal
radiology -
thromboly
sis | Thrombolysis | Surgical | Carotid
endarterectomy | | Hassani et
al (49) | 2020 | Case
series | Case
1 | 5th
deca
de | NR | NR | Left MCA
stroke NOS | Hypertensio
n;
Hyperlipidae
mia | NR | Yes | 4 | Interventio
nal
radiology -
thrombect
omy | Thrombectomy + aspirin | No change | | | | | | Case
2 | 5th
deca
de | NR | NR | Right MCA
stroke NOS | Diabetes
mellitus,
asthma | NR | No | 12 | Interventio
nal
radiology -
thrombect
omy | Thrombectomy + apixaban | No change | | | | | | Case
3 | 6th
deca
de | NR | NR | Right MCA
stroke NOS | Hypertensio
n | NR | No | 16 | Medical
managem
ent | Medical
management
(DAPT - aspirin +
clopidogrel) | No change | | | Liu et
al (50) | 2020 | Case
report | 1 | 52 | М | NR | NR | None | None | No | NR | Medical
managem
ent | Antiplatelet + statin | No change | | | Krasteva
et al (51) | 2020 | Case
report | 1 | 47 | F | NR | Sudden episode of left-sided sensory disturbance, followed by a weak left hand grip after stumbling while climbing stairs | None | None | NR | NR | Interventio
nal
radiology -
stenting | Conservative therapy with aspirin 100 mg/d, clopidogrel 75 mg/d, and atorvastatin 80 mg/d, CGuard stent was deployed in the right extracranial carotid artery | No change | | |-----------------------------|------|--------------------------|-----------|---------------------|----|----------------|---|---|---------------------------|--------------------------|-----|---|---|---------------|--| | Ning et al
(52) | 2020 | Case
report | 1 | 65 | M | Han
Chinese | Intermittent dizziness and slurred speech for 1.5 years, as well as numbness in both upper limbs for 4 months | Diabetes (17
years),
hypertensio
n (10
months) | NR | Smoke
r (20
years) | NR | Surgical | Carotid
endarterectomy
(CEA) | No change | | | Ozaki et
al (53) | 2020 | Case
report | 1 | 48 | F | NR | Right sided hemiparesis | Fibromuscul
ar dysplasia | NR | NR | 11 | | Thrombectomy + DAPT | Surgical | Carotid
endarterectomy 2
months later +
DAPT for 1 year,
switched to SAPT
(aspirin) | | Priyadarsh
ni et al (54) | 2020 | Case
report | 1 | 54 | F | NR | Right sided
facial warmth
and tongue
paraesthesia,
occipital
headache | Hypertensio n, hyperlipidae mia, ischaemic stroke with residual leftsided hemiparesis | NR | NR | NR | Medical
managem
ent | IV heparin and
DAPT with aspirin
and clopidogrel | No change | | | Ren et
al (55) | 2020 | Case
report | 1 | 48 | M | NR | Right sided
weakness
and
numbness.
Represented
1 month later
with right
sided
weakness
+lethargy | NR | NR | NR | NR | Surgical | Superficial
temporal artery to
MCA bypass | No change | | | Watanabe
et al (56) | 2020 | Case
report | 1 | NR
("in
40s") | NR | NR | Left-sided
hemiparesis | None | No
FMH
of
stroke | Non-
smoke
r | NR | Medical
managem
ent | Heparin
infusion,
subsequently
changed to DAPT
+ anticoagulant | Interventiona | l radiology - stenting | | Borghese
et al (57) | 2021 | Retrospec
tive series | Case
1 | 52 | M | Asian | | 3
Hypertensio | NR | x1
smoke
r | 9,2 | Interventio
nal
radiology - | Thrombectomy | Surgical | Web excision + patch angioplasty | | | | | | | | | | n; 3 high
BMI | | | | thrombect | | | +75mg aspirin (indefinitely) | |-------------------------------|------|----------------|-----------|----|---|---------------|---|---|----|-------|-------|---|--|-----------|---| | | | | Case
2 | 44 | F | Caucasia
n | | | NR | | 6,4 | Interventio
nal
radiology -
thrombect
omy | Thrombectomy | Surgical | Wes resection +
end-to-end
anastomosis
+75mg aspirin
(indefinitely) | | | | | Case
3 | 49 | F | Caucasia
n | | | NR | | 6,3 | NR | | Surgical | Web excision +
patch angioplasty
+75mg aspirin
(indefinitely) | | | | | Case
4 | 44 | M | Caucasia
n | | | NR | | 4,0 | NR | | Surgical | Web resection +
end-to-end
anastomsis +
75mg aspirin
(indefinitely) | | | | | Case
5 | 53 | F | Caucasia
n | | | NR | | 17,15 | Interventio
nal
radiology -
thrombect
omy | Thrombectomy | Surgical | Web resection +
end-to-end
anastomsis +
75mg aspirin
(indefinitely) | | Bouchal et
al (58) | 2021 | Case
report | 1 | 58 | M | NR | Sudden
onset left-
sided
weakness,
numbness
and speech
difficulty
which lasted
90 minutes | NR | NR | Smoke | 13 | Medical
Managem
ent | Intravenous tissue plasminogen activator (IVT) alteplase at 2 hours and 15 minutes after the onset of symptoms, IVT 10 days after the first stroke, resulting in dramatic improvement, stenting 2 days after the last stroke | No change | Dual antiplatelet
agents (aspirin
100 mg and
clopidogrel 75
mg) and
atorvastatin (20
mg daily), | | Calle La
Rosa et al
(6) | 2021 | Case
report | 1 | 35 | F | NR | Weakness in
both right
limbs and a
sudden-onset
language
disorder | No (spontaneou s abortion in the first trimester of pregnancy, three years before the current event and without any complication s) | NR | NR | 13 | Medical
managem
ent | Aspirin (100
mg/day) as the
primary medical
treatment | No change | Two-year follow-
up | | Essibayi et
al (59) | 2021 | Case
report | 1 | 51 | F | NR | Sudden
onset of
aphasia, right
hemi-sensory
loss, and
right visual
field cut | Mitral valve prolapse and migraines with visual aura | NR | NR | NR | Medical
managem
ent | Clopidogrel and a
high-intensity
statin,
discontinuation of
oral contraceptive,
rheumatological | No change | Plavix
monotherapy,
with a 10-month
follow-up showing
no recurrent
ischemic events | | | | | | | | | | | | | | | and genetic evaluation | | | |-------------------------|------|-----------------------|-----------|----|---|---------------------|---|---|----|------------|----|---|--|---|--| | Gao et al
(60) | 2021 | Case
report | 1 | 50 | M | NR | Left arm
weakness
and slurred
speech | Diabetes | NR | Yes | NR | Interventio
nal
radiology -
thromboly
sis +
thrombect
omy | 0.06 mg/kg IV
thrombolysis
bridging
mechanical
thrombectomy | Surgical | Carotid endarterectomy after 30 days + combined antiplatelet and anticoagulant therapy, atorvastatin 40 mg | | Gao et al
(61) | 2021 | Case
report | 1 | 65 | M | NR | Left limb weakness accompanied by a headache & dizziness for 4 hours, moderate left hemiplegia, neglect, and sensory loss | Hypertention
(4 years),
poor blood
pressure
control,
hyperlipidem
ia (>20
years) | NR | NR | 8 | Medical
managem
ent | Dual
antihypertensive
therapy, including
aspirin, clopidogrel,
enoxaparin sodium
and atorvastatin to
manage
hyperlipidemia | No change | Continuation of
aspirin therapy,
with a reduction
to single
antiplatelet aspirin
after 2 months | | Giammello
et al (62) | 2021 | Case
report | 1 | 63 | F | NR | Right-sided
weakness,
aphasia,
reduced
speech
output,
hemiparesis,
slight
hypoesthesia
on the right
side, and
motor
aphasia | Arterial
hypertensio
n,
dyslipidemia | NR | Smoke
r | 19 | Interventio
nal
radiology -
thromboly
sis +
thrombect
omy | Intravenous thrombolysis with recombinant tissue plasminogen activator (IV rT-PA), 3 mechanical thrombectomies, stent replacement in left common carotid artery and internal carotid artery, dual platelet therapy (DAPT) with acetylsalicylic acid (ASA) and clopidogrel. | No change | Low dose aspirin,
continued dual
antiplatelet
therapy (DAPT) | | Mathew et al (63) | 2021 | Retrospec tive series | Case
1 | 48 | F | Hispanic | Stroke NOS | NR | NR | NR | NR | NR | Started on DAPT (aspirin 325mg +clopidogrel 75mg) for 5 days prior to stenting | Interventio
nal
radiology -
stenting | Carotid stenting +
aspirin 81mg
(switched from
DAPT at 6 week
follow-up) | | | | | Case
2 | 59 | М | African
American | Stroke NOS | NR | NR | NR | NR | NR | 3 | Interventio
nal
radiology -
stenting | Carotid stenting +
aspirin 81mg
(switched from
DAPT at 6 week
follow-up) | | | | | Case
3 | 37 | F | African
American | Vertigo | NR | NR | NR | NR | NR | | Surgical | Carotid
endarterectomy +
patchplasty | | | | | Case
4 | 56 | F | Hispanic | Stroke NOS | NR | NR | NR | NR | Medical
managem
ent | | Interventio
nal
radiology -
stenting | Carotid stenting +
aspirin 81mg
(switched from
DAPT at 6 week
follow-up) | |---------------------|------|----------------|------------|----|---|---------------------|--|------|--------------|----|----|---|---|---|--| | | | | Case
5 | 60 | F | African
American | Stroke NOS | NR | NR | NR | NR | Medical
managem
ent | | Interventio
nal
radiology -
stenting | Carotid stenting +
aspirin 81mg
(switched from
DAPT at 6 week
follow-up) | | | | | Case
6 | 56 | M | African
American | Stroke NOS | NR | NR | NR | NR | Medical
managem
ent | | Interventio
nal
radiology -
stenting | Carotid stenting +
aspirin 81mg
(switched from
DAPT at 6 week
follow-up) | | | | | Case
7 | 62 | F | African
American | Stroke NOS | NR | NR | NR | NR | Medical
managem
ent | | Interventio
nal
radiology -
stenting | Carotid stenting +
aspirin 81mg
(switched from
DAPT at 6 week
follow-up) | | | | | Case
8 | 59 | M | Caucasia
n | Stroke NOS | NR | NR | NR | NR | Medical
managem
ent | | Interventio
nal
radiology -
stenting | Carotid stenting +
aspirin 81mg
(switched from
DAPT at 6 week
follow-up) | | | | | Case
9 | 56 | F | African
American | Vertigo | NR | NR | NR | NR | Medical
managem
ent | | Interventio
nal
radiology -
stenting | Carotid stenting +
aspirin 81mg
(switched from
DAPT at 6 week
follow-up) | | | | | Case
10 | 64 | F | Asian | | NR | NR | NR | NR | Medical
managem
ent | | Interventio
nal
radiology -
stenting | Carotid stenting +
aspirin 81mg
(switched from
DAPT at 6 week
follow-up) | | Mehra et al
(64) | 2021 | Case
report | 1 | 31 | F | NR | Visual aura,
headache,
intermittent
paraesthesia
of left fifth
digit of hand | NR | Migrai
ne | NR | NR | Surgical | Apixaban, right ICA
web excision and
arteriotomy
repaired with GSV
patch angioplasty | No change | Single antiplatelet agent | | Mi et al
(65) | 2021 | Case report | 1 | 53 | М | NR | 3-day history of severe bilateral frontal headache, accompanied by a sudden onset of sluggish responses, cognitive decline, particularly in calculations | None | None | NR | NR | Interventio
nal
radiology -
stenting | Carotid stent
placement, aspirin
and clopidogrel
therapy were
continued for 3
months, followed
by aspirin
indefinitely | No change |
Follow-up at 3 months with (CTA), and continuous monitoring due to mild cognitive impairment | | Multon et
al (3) | 2021 | Prospectiv
e series | Case
1 | 38 | 6M:5
F | 9 Afro-
Caribbea
n; 2
Caucasia
n | 11
Symptomatic;
5
asymptomati
c (6 had
recurrent
symptoms at | Hyperlipidae
mia,
migraine | NR | NR | 1 | Surgical | Internal carotid
resection and
anastomosis +
contraleteral CEA
and patchplasty 23
days later + SAPT
for 6-12 months | No change | | |---------------------|------|------------------------|------------|----|-----------|--|--|--|----|-----|----|---|---|-----------|---| | | | | Case
2 | 49 | | | presentation) | None | NR | NR | 0 | Surgical | CEA + patchplasty
+ SAPT for 6-12
months | No change | | | | | | Case
3 | 41 | | | | Hyperlipidae
mia,
hepatitis B | NR | NR | 0 | Surgical | Internal carotid
resection and
anastomosis -
contralateral side
54 days later +
SAPT for 6-12
months | No change | | | | | | Case
4 | 60 | | | | Hyperlipidae
mia,
fenestrated
endovascula
r aneurysm
repair | NR | NR | 2 | Surgical | Carotid stenting -
contralateral side
551 days later +
SAPT for 6-12
months | No change | | | | | | Case
5 | 53 | | | | Pituitary
adenoma | NR | NR | 1 | Surgical | Internal carotid
resection and
anastomosis -
contralateral side
167 days later +
SAPT for 6-12
months | No change | | | | | | Case
6 | 41 | | | | Meniere's
disease | NR | NR | 0 | Surgical | Internal carotid
resection and
anastomosis +
contraleteral CEA
and patchplasty 23
days later+ SAPT
for 6-12 months | No change | | | | | | Case
7 | 44 | | | | Migraine | NR | yes | 0 | Interventio
nal
radiology -
stenting | Stenting - DAPT
for 3 months then
SAPT | Surgical | Internal carotid resection and anastomosis | | | | | Case
8 | 41 | | | | Hypertensio
n;
Hyperlipidae
mia | NR | NR | 4 | Interventio
nal
radiology -
stenting | | Surgical | CEA +
patchplasty | | | | | Case
9 | 43 | | | | Uterine
myoma | NR | NR | 15 | Interventio
nal
radiology -
stenting | | Surgical | CEA + patch
angioplasty | | | | | Case
10 | 34 | | | | None | NR | NR | 18 | Interventio
nal
radiology -
stenting | | Surgical | Carotid stenting -
contralateral
internal carotid
resection and
anastomosis 147
days later | | | | | Case
11 | 40 | | | | None | NR | NR | 25 | Interventio
nal
radiology -
stenting | | Surgical | Internal carotid resection and anastomosis | |----------------------|------|----------------|------------|----|---|----|--|---|----|----------------------|----|---|---------------------------------|---|--| | Ono et
al (66) | 2021 | Case
report | 1 | 43 | F | NR | Transient
right
hemiparesis
+ aphasia | None | NR | No | NR | Medical
managem
ent | Clopidogrel 75mg
monotherapy | Interventio
nal
Radiology -
Thrombect
omy | Represented 17 months later with R hemiparesis and dysarthria. New occlusion in left M1 region on CT.Recurrence prior to thrombectomy. Discharged with rivaroxaban + clopidogrel. | | Thomas et
al (67) | 2021 | Case
report | 1 | 39 | F | NR | Left arm weakness - pregnant with twins; 30-min episode of onset left upper limb weakness, slurred speech and left-sided blurred vision 5 years earlier. | Migraine,
Raynaud's,
eczema, 2
previous
pregnancies | NR | Smoke
r
10/day | NR | Medical
managem
ent | DAPT | No change | DAPT (75mg
aspirin + 75mg
clopidogrel) -
Temporarily
switched to
prophylactic low
molecular weight
heparin late third
trimester and 6
weeks following
delivery via C-
section | | Yin et al
(68) | 2021 | Case
report | 1 | 37 | F | NR | Left
hemiparesis,
somnolence,
gaze
paralysis | None | NR | NR | NR | Interventio
nal
radiology -
thrombect
omy | Stent retriever embolectomy | No change | Aspirin 100
mg/day,
clopidogrel 75
mg/day,
atorvastatin 40
mg/day, then
carotid
endarterectomy
20 days post-
stroke | | Zhiyong et
al (69) | 2021 | Case report | 1 | 59 | M | NR | Acute right
hemispheric
syndrome | No
cardiovascul
ar risk
factors | NR | No | NR | Interventio
nal
radiology -
thrombect
omy | Combination
therapy of IV
thrombolysis and
mechanical
thrombectomy | No change | Planned for
elective surgery
to carotid web
and thrombus
However, patient
had recurrence of
symptoms 5 days
later with MCA
reoccluded and
thrombus
disappeared, no
further
information
provided | |------------------------|------|----------------|---|----|---|--------|--|--|----|----|----|---|---|---|--| | Alnajjar et
al (70) | 2022 | Case
report | 1 | 64 | M | Indian | Left-sided
weakness on
both
presentation
1 and 2 | Diabetes
mellitus,
hypertensio
n, recent
right corona
radiata
stroke | NR | NR | NR | Medical
managem
ent | Presentation 1:
DAPT, discharged
to stroke
rehabilitation facilty | Interventio
nal
radiology -
stenting | Presentation 2:
carotid stenting -
DAPT | | Charifi et
al (71) | 2022 | Case
series | 3 | 36 | M | NR | Left
hemiplegia
and
dysarthria | Facial
paralysis 2
months prior | NR | NR | NR | Medical
managem
ent | Intravenous recombinant tissue plasminogen activator - no improvement, patient rejected endovascular therapy | No change | 100 mg aspirin
and 75 mg
clopidogrel | | | | | | 36 | F | NR | Right
hemiplegia | TIA 6
months prior | NR | NR | NR | Medical
managem
ent | Oral dual
antiplatelet
therapy, IV UFH
100 U/H, right
carotid stent after
20 days medical
treatment | Interventio
nal
radiology -
stenting | Planned left
carotid stent 1
month later, long-
term antiplatelet
therapy with
aspirin and
clopidogrel | | | | | | 40 | F | NR | Left
hemiparesis | Hypertensio
n, right
ischaemic
stroke 1
year prior | NR | NR | NR | Interventio
nal
radiology -
stenting | Emergency
endovascular
stenting of internal
carotids, heparin
with statin during
hospitalisation | No change | Life-long DAPT | | Gillgren et
al (72) | 2022 | Case
report | 1 | 32 | M | African | Left-sided
hemiplegia,
aphasia, and
central facial
nerve palsy | None | None | Non-
smoke
r | 11 | Surgical | Dual antiplatelet therapy (aspirin and clopidogrel) for 3 weeks, followed by a single aspirin and atorvastatin at 40 mg; Webectomy surgery and discharged with a prescription for aspirin for 4 months, and atorvastatin was discontinued after 1 month | No change | Recovery; MRI as
part of long-term
follo- up | |-------------------------|------|----------------|---|----|---|---------|--|--|------|---|----|---|---|---|---| | Gour et al
(73) | 2022 | Case report | 1 | 39 | F | | Speech
impairment,
weakness,
and sensory
disturbances
in left limbs | No
cardiovascul
ar risk
factors
except
increased
BMI | NR | Not
directly
reporte
d but
assumi
ng
non-
smoke
r as it
states
no CV
risk
factors | NR | Medical
managem
ent | Dual antiplatelet therapy and statin | No change | Dual antiplatelet
therapy | | Hadwen et
al (74) | 2022 | Case
report | 1 | 61 | M | NR | Stroke
syndrome,
characterized
by left
hemiplegia
and left hemi-
neglect | NR | NR | NR | NR | Interventio
nal
radiology
-
thrombect
omy | Thrombectomy to recanalise the occluded right middle cerebral artery | Interventio
nal
radiology -
stenting | Antiplatelet
therapy (aspirin)
later switched to
dual antiplatelet
therapy, carotid
stenting due to
symptom
recurrence | | Ishikawa
et al (75) | 2022 | Case
report | 1 | 51 | М | NR | Consciousne
ss
disturbance,
left
hemiparesis | NR | NR | NR | NR | Interventio
nal
radiology -
thrombect
omy | Mechanical
thrombectomy | Interventio
nal
radiology -
stenting | DAPT, stent
placement 3
weeks after
admission | | Khaladkar
et al (76) | 2022 | Case
report | 1 | 44 | F | NR | Left upper
and lower
limb
weakness
associated
with
ipsilateral | None | None | Non-
smoke
r | NR | Medical
managem
ent | Conservative
treatment with dual
oral antiplatelet
therapy,
anticoagulant
injections, and
statins | No change | DAPT +
anticoagulation +
statin | | | | | | | | | facial
weakness | | | | | | | | | |--------------------------------|------|----------------|-----------|----|----|---------------|--|--|----|-----|----|---|--|---|--| | Kodankan
dath et al
(77) | 2022 | Case report | 1 | 55 | F | Caucasia
n | Acute onset
of aphasia
and right-
sided
hemiparesis | No | NR | NR | NR | Interventio
nal
radiology -
thrombect
omy | IV tissue
plasminogen
activator,
mechanical
thrombectomy | Interventio
nal
radiology -
stenting | 6 months, follow-
up neck CTA,
elective stenting
of carotid web,
antiplatelet
therapy | | Mesnaoui
et al (78) | 2022 | Case
report | Case
1 | 30 | F | NR | Right sided hemiplegia | NR | NR | NR | NR | Interventio
nal
radiology -
stenting | Carotid stenting | No change | Monotherapy | | | | | Case
2 | 45 | NR | NR | Left sided
hemiplegia | NR | NR | NR | NR | Interventio
nal
radiology -
thromboly
sis | Thrombolysis at 3 hours with complete recovery | Surgical | Surgical
thrombectomy
and
thromboendartere
ctomy at Day 8 | | | | | Case
3 | 65 | NR | NR | Left sided
hemiparesis | NR | NR | Yes | NR | Surgical | Surgery -
thrombectomy +
carotid
thromboendarterec
tomy | No change | NR | | | | | Case
4 | 50 | F | NR | Headache +
dizziness | Cardiovascu
lar risk
factors NOS | NR | NR | NR | Interventio
nal
radiology -
stenting | Angioplasty + stenting | No change | Monotherapy | | Miranda et
al (79) | 2022 | Case
report | 1 | 47 | F | NR | Left face and upper limb sensorimotor deficits | NR | NR | NR | 11 | Interventio
nal
radiology -
stenting | Endovascular stenting of the right internal carotid web and reintroduction of aspirin 100 mg daily. Acute reperfusion therapy was contraindicated due to late hospital admission | No change | Medical
management,
antiplatelet
therapy, and
revascularization
procedures | | Oushy et
al (80) | 2022 | Case
report | 1 | 43 | F | NR | Recurrent
right
hemispheric
stroke - 3
previous
MCA infarcts
from age 36 | On OCP.
Patent
foramen
ovale | NR | No | NR | Medical
managem
ent | Previously on
DAPT but had
haemorrhagic
transformation | Interventio
nal
radiology -
stenting | Carotid stenting +
DAPT | | Rodriguez-
Castro et
al (81) | 2022 | Case
series | 1 | 40s | NR | NR | 5 month
history of
recurrent
episodes of
right limb
paresis and
motor
aphasia | No vascular
risk factors | NR | Non-
smoke
r | NR | Medical
managem
ent | Admission 1 - patient discharged home on single antiplatelet therapy, no acute treatment with IV fibrinolysis or mechanical thrombectomy on either admission | Surgical | Carotid
endarterectomy
due to symptom
recurrence | |------------------------------------|------|----------------|---|-----|----|----|--|--|----|--------------------|----|---------------------------|--|---|---| | | | | 2 | 40s | NR | NR | NR | No vascular risk factors | NR | Non-
smoke
r | NR | Medical
managem
ent | No acute treatment
with IV fibrinolysis
or mechanical
thrombectomy | Surgical | Carotid
endarterectomy | | | | | 3 | 60s | NR | NR | NR | Hypertensio
n,
dyslipidaemi
a | NR | Non-
smoke
r | NR | Medical
managem
ent | No acute treatment
with IV fibrinolysis
or mechanical
thrombectomy | Surgical | Carotid endarterectomy | | | | | 4 | 60s | NR | NR | NR | Hypertensio
n | NR | Non-
smoke
r | NR | Medical
managem
ent | No acute treatment
with IV fibrinolysis
or mechanical
thrombectomy | Surgical | Carotid endarterectomy | | | | | 5 | 50s | NR | NR | NR | No vascular
risk factors | NR | Non-
smoke
r | NR | Medical
managem
ent | No acute treatment
with IV fibrinolysis
or mechanical
thrombectomy | Interventio
nal
radiology -
stenting | Stenting | | | | | 6 | 50s | NR | NR | Transient left hemiparesis | Hypertensio
n,
dyslipidaemi
a | NR | Non-
smoke
r | NR | Medical
managem
ent | No acute treatment
with IV fibrinolysis
or mechanical
thrombectomy,
patient discharged
on dual antiplatelet
therapy | Surgical | CTA repeated
one month later -
resolution of
superimposed
thrombus and
typical CW seen,
carotid
endarterectomy
done | | | | | 7 | 50s | NR | NR | NR | No vascular
risk factors
other than
smoker | NR | Smoke
r | NR | Medical
managem
ent | No acute treatment
with IV fibrinolysis
or mechanical
thrombectomy | Surgical | Carotid
endarterectomy | |----------------------|------|----------------|-----------|-----|----|------------------------|--|---|----|---------------------------|------|---|--|-----------|--| | | | | 8 | 50s | NR | NR | NR | Hypertensio
n | NR | Non-
smoke
r | NR | Medical
managem
ent | No acute treatment
with IV fibrinolysis
or mechanical
thrombectomy | Surgical | Carotid
endarterectomy | | | | | 9 | 40s | NR | NR | NR | Hypertensio
n | NR | Smoke
r | NR | Medical
managem
ent | No acute treatment
with IV fibrinolysis
or mechanical
thrombectomy | Surgical | Carotid
endarterectomy | | Schutt et
al (82) | 2022 | Case
series | Case
1 | 47 | M | Afro-
Caribbea
n | Right arm
and face
weakness,
mild
expression
aphasia,
right-left
confusion | Nil
significant | NR | NR | NR | Interventio
nal
radiology -
stenting | Carotid stenting | No change | DAPT +
atorvastatin | | | | | Case
2 | 48 | F | Afro-
Caribbea
n | Right gaze
deviation, left
sided dense
hemiplegia,
sensory loss
and neglect | Mild hypertensio n, diet- controlled hyperlipidae mia | NR | NR | NR | Interventio
nal
radiology -
thrombect
omy | Thrombectomy for
right MCA
occlusion, followed
by CEA 3-days
post-stroke | Surgical | Carotid
endarterectomy +
aspirin +
atorvastatin | | | | | Case
3 | 39 | F | Afro-
Caribbea
n | Painless vision loss in right eye + left hemiparesis | Nil
significant | NR | NR | NR | Interventio
nal
radiology -
stenting | NR | No change | DAPT for 3
months, then
transitioned to
aspirin
monotherapy | | Shen et
al (83) | 2022 | Case report | 1 | 42 | M | NR | x1 Recurrent
stroke - right
hand
weakness +
dizziness.
Represented
with
intermittent
weakness
and
numbness in
the right
upper limb | Hypertensio
n | NR | Yes | 7, 6 | Interventio
nal
radiology -
thromboly
sis | Thrombolysis | Surgical | Medical
management with
DAPT. Carotid
endarterectomy
on Day 3 on
representation;
discharged on
SAPT (Aspirin) | | Zhang et al
(84) | 2022 | Case
report | 1 | 38 | M | Asian | Left hemispheric syndrome + transient | Nil
significant | NR | Curren
t
smoke
r | NR | Interventio
nal
radiology - | Mechanical thrombed followed by DAPT | ctomy, | Continued on DAPT, repeat CTA showed unchanged | | | | | | | | | aphasia 1
month prior | | | | | thrombect
omy | | | stenosis of carotid
bulb, underwent
CEA 56 days
after initial
management | |-----------------------------|------|----------------|-----------|----|---|----------------------
--|---|--------|--------------------|--|---------------------------|---|-------------------------------|---| | Zhang et al
(85) | 2022 | Case
report | NR | 55 | M | NR | Weakness in the left limb | Type 2
diabetes (7
years) | NR | NR | NR | Surgical | CEA | | NR | | Assid et al
(86) | 2023 | Case
report | NR | 30 | F | African-
American | Left upper
and lower
extremity
hypoesthesia
and slurred
speech 1
hour prior to
arriving to +
numbness
and slurred
speech
progressed | Obesity
(BMI 43.3
kg/m2), 10
months
post-partum | Stroke | Non-
smoke
r | 0 (on
second
day of
administrat
ion) | Surgical | Right carotid endart
drug-related therapi
90 mg twice daily, a
mg once daily, and a
once daily), | es (ticagrelor
mlodipine 5 | Ticagrelor 90 mg
once a day,
ongoing
monitoring | | De
Lorenzo et
al (87) | 2023 | Case
report | 1 | 54 | F | NR | Right
sensory-
motor | Nil
significant | None | Smoke
r | 2 | Medical
managem
ent | Started on DAPT
after stroke
suspected,
followed by left
CAS after 1 week
of antithrombotic
treatment | Surgical | Further
thrombophilia
workup normal,
continued on
DAPT for 3
months, then
SAPT | | Fanning et
al (88) | 2023 | Case
report | NR | 26 | F | NR | 5 hours of
acute right
neck pain
and left arm
weakness
after
exercising | NR | NR | NR | 3 | Surgical | Transferred to a constroke centre for furt
management, no thr
therapy, carotid end
(CEA) | her
ombolytic | Post CEA
monitoring | | Faye et al
(89) | 2023 | Case
report | 2 | 30 | F | NR | Aphasia and
left upper
limb
weakness | NR | NR | NR | 8 | Medical
managem
ent | Antiplatelet | No change | None (surgical
treatment was
refused) | | | | | | 54 | M | NR | Sudden
presentation
with speech
disorder and
right sided
weakness | NR | NR | NR | 11 | Medical
managem
ent | Antiplatelet | No change | Antiplatelets
curative
treatments,
discharge without
carotid
endarterectomy
surgery and
stenting | | Kamatani
et al (90) | 2023 | Case
series | Case
1 | 79 | М | NR | NR | Hypertensio
n,
hyperlipidae
mia | NR | NR | NR | Medical
managem
ent | DAPT for 10 days
prior to CAS | Surgical | DAPT for 6
months | | | | | Case
2 | 80 | M | NR | NR | Hypertensio
n, DM, | NR | NR | NR | Medical
managem
ent | DAPT for 10 days prior to CAS | Surgical | | | | | | | | | | | hyperlipidae
mia | | | | | | | | |-----------------------------|------|----------------|-----------|-----|---|---------------|---|---|----|----------------------------|----|---|---|---|---| | | | | Case
3 | 93 | F | NR | NR | Hypertensio
n,
hyperlipidae
mia | NR | NR | NR | Medical
managem
ent | DAPT for 10 days
prior to CAS | Surgical | | | | | | Case
4 | 74 | F | NR | NR | Nil
significant | NR | NR | NR | Medical
managem
ent | DAPT for 10 days prior to CAS | Surgical | | | | | | Case
5 | 79 | F | NR | NR | Hypertensio
n,
hyperlipidae
mia | NR | NR | NR | Medical
managem
ent | DAPT for 10 days
prior to CAS | Surgical | | | | | | Case
6 | 86 | М | NR | NR | Hypertensio
n | NR | NR | NR | Medical
managem
ent | DAPT for 10 days
prior to CAS | Surgical | | | Kasashima
et al (91) | 2023 | Case
report | NR | 67 | М | NR | Upper right
limb
weakness
and ataxia | Hypertensio
n,
dyslipidaemi
a, type 2
diabetes | NR | NR | NR | Medical
managem
ent | Aspirin and clopidogrel, argatroban hydrate infusion, left carotid endarterectomy (CEA) | Surgical | 100 mg/day of
aspirin and 75
mg/day of
clopidogrel
following the
initial treatment | | Kawahara
et al (92) | 2023 | Case
report | NR | 40 | M | Caucasia
n | Sudden
onset of left-
sided facial
droop,
hemiparesis,
and
dysarthria | No | NR | Tobac
co
chewin
g | NR | Interventio nal radiology - thromboly sis + thrombect omy | Thrombolysis and
alteplase,
mechanical
thrombectomy,
CEA (on hospital
day 5) | Surgical | Continued on
aspirin 81 mg and
atorvastatin 10
mg daily.
Outpatient follow-
up 4 and 12
weeks | | Lkharrat et
al (93) | 2023 | Case
report | NR | 35 | F | NR | Acute right
hemiplegia
with facial
palsy
evolving for
30 minutes | No | NR | NR | 14 | Interventio nal radiology - thromboly sis + thrombect omy | Thrombolysis with
0.25 mg/kg of
tenecteplase,
stenting of carotid
bulb | Interventio
nal
radiology -
stenting | Dual antiplatelet
therapy was
continued for
three months,
followed by
aspirin indefinitely | | Naito
Gomi et al
(94) | 2023 | Case
report | 1 | 87 | F | NR | Left hemiparesis + hemi paraesthesia 2 years before referral | None | NR | NR | NR | Medical
managem
ent | Clopidogrel on
initial stroke; no
surgical
management
reported | No change | NR | | Radu et al
(95) | 2023 | Case
series | Case
1 | 50s | M | NR | 2 recurrent
left-sided
ischaemic
strokes | NR | NR | NR | NR | Medical
managem
ent | Aspirin,
clopidogrel,
apixaban for 2
months | Interventio
nal
radiology -
stenting | NR | | | | | Case
2 | 50s | M | NR | 2 previous
right-sided
ischaemic
strokes | NR - on
aspirin and
rivaroxaban
during initial
investigation
s | NR | NR | NR | Interventio
nal
radiology -
stenting | CAS | No change | NR | | | | | Case
3 | 50s | M | NR | Right-sided ischaemic stroke | NR | NR | NR | NR | Interventio
nal
radiology -
stenting | CAS | No change | NR | |-------------------------|------|----------------|-----------|-----------|----|---------------|---|---------------------|------------------|----------------------|--------------------|---|--|----------------|---| | Vukasović
et al (96) | 2023 | Case
report | 1 | 46 | F | Caucasia
n | Left temporal
headache
accompanied
with flashes
in the right
half of the
visual field | Hypertensio
n | NR | No | N/A | Medical
managem
ent | Aspirin 100mg + amlodipine 5mg | No change | NR | | Wang et al
(97) | 2023 | Case
series | Case
1 | 42 | М | NR | Ischaemic
stroke | No | NR | Non-
smoke
r | 3 | Surgical | Complete carotid web resection | No change | NR | | | | | Case
2 | 41 | F | NR | Ischaemic
stroke | Hypertensio
n | NR | Former
smoke
r | 0 | Surgical | Endarterectomy | No change | NR | | | | | Case
3 | 57 | F | NR | Ischaemic
stroke | No HTN, no
DM | NR | Non-
smoke | 0 | Surgical | Complete carotid web resection | No change | NR | | | | | Case
4 | 57 | F | NR | TIA - right
amaurosis
fugax | Hypertensio
n | NR | Former
smoke
r | 0 | Surgical | Complete carotid web resection | No change | NR | | | | | Case
5 | 36 | М | NR | Ischaemic
stroke | No HTN, no
DM | NR | Non-
smoke
r | 2 | Surgical | Complete carotid web resection | No change | NR | | | | | Case
6 | 31 | F | NR | Ischaemic
stroke | No HTN, no
DM | NR | Non-
smoke
r | 4 | Surgical | Complete carotid web resection | No change | NR | | | | | | Case
7 | 39 | F | NR | Ischaemic
stroke | No HTN, no
DM | NR | Non-
smoke
r | 13 | Surgical | Endarterectomy | No change | | | | | Case
8 | 47 | F | NR | Ischaemic
stroke | No HTN, no
DM | NR | Curren
t
smoke | 0 | Surgical | Complete carotid web resection | No change | NR | | | | | Case
9 | 44 | F | NR | Ischaemic
stroke | No HTN, no
DM | NR | Non-
smoke
r | 11 | Surgical | Complete carotid web resection | No change | NR | | Wang et al
(98) | 2023 | Case
report | 1 | 49 | М | NR | Aphasia +
right limb
weakness | Stroke | NR | NR | NR | Interventio
nal
radiology -
thromboly
sis | IV thrombolysis with rt-PA 0.9 mg/kg, subsequent attempt at thrombectomy but was abandoned as occluded segment of MCA had recanalized, 60 hours thrombolysis, subsequently emergent carotid endarterectomy | Surgical | NR (but this is a case report of recurrent stroke where patient was on antiplatelet drugs and statins prior to admission) | | Xu et al
(99) | 2023 | Case
report | 1 | 59 | M | NR | Recurrent numbness and weakness of right upper extremity, previously had light-headedness and left amaurosis during neck flexion (therefore took aspirin 100 mg/day) | NR | NR | NR | NR |
NR | NR | Surgical | Carotid
endarterectomy
and left
styloidectomy
performed
simultaneously | |--------------------------------|------|----------------|---|----|---|----|--|------------------|------|--------------------|----|---|--|-----------|---| | Yang et al
(100) | 2023 | Case report | 1 | 43 | F | NR | An acute onset of left limb weakness and slurred speech within 3 hours, which led to her admission to the emergency department. This was accompanied by a National Institutes of Health Stroke Scale (NIHSS) score of 12 | None | None | Non-
smoke
r | 12 | Interventio
nal
radiology -
thromboly
sis +
thrombect
omy | Intravenous thrombolysis (rt-PA), mechanical thrombectomy to achieve recanalisation of the occluded right middle cerebral artery, anticogulation therapy | No change | Rehabilitation 2
weeks after initial
treatment; 2
month follow-up
to repeat CTA | | Yin et al
(101) | 2023 | Case
report | 1 | 63 | M | NR | No
presenting
complaint;
routine
ultrasound
examination | Hypertensio
n | None | NR | NR | Surgical | Carotid
endarterectomy | No change | NR | | Zelada-
Rios et al
(102) | 2023 | Case
series | 1 | 37 | F | NR | Ischaemic
stroke,
specific
symptoms
NR | None | NR | NR | NR | Medical
managem
ent | Aspirin | No change | Aspirin 100
mg/day,
atorvastatin 40
mg/day | | | | | 2 | 43 | F | NR | Ischaemic
stroke,
specific
symptoms
NR | Previous
TIA | NR | NR | NR | Medical
managem
ent | Aspirin | No change | Aspirin 100
mg/day,
atorvastatin 40
mg/day | | | | | 3 | 42 | F | NR | Ischaemic
stroke,
specific
symptoms
NR | Chronic
headache | NR | NR | NR | Medical
managem
ent | Aspirin | No change | Aspirin 100
mg/day,
atorvastatin 40
mg/day | |----------------------|------|----------------|---|----|---|----|---|---|----|----|----|---------------------------|---------------------------|-----------|---| | | | | 4 | 35 | M | NR | Ischaemic
stroke,
specific
symptoms
NR | None | NR | NR | NR | Medical
managem
ent | Aspirin | No change | Aspirin 100
mg/day,
atorvastatin 80
mg/day | | | | | 5 | 41 | M | NR | Ischaemic
stroke,
specific
symptoms
NR | Migraine | NR | NR | NR | Medical
managem
ent | Aspirin | No change | Aspirin 100
mg/day,
atorvastatin 40
mg/day | | Zhang et al
(103) | 2023 | Case
report | 1 | 69 | F | NR | Paroxysmal left limb weakness for 2 days, then observed left central facial lingual palsy and left hemiplegia for 10 minutes on admission | Well-
controlled
hypertensio
n and
diabetes | NR | NR | NR | Medical
managem
ent | Aspirin +
atorvastatin | No change | NR | | Mutlu et al
(104) | 2024 | Case
report | 1 | 51 | M | NR | Acute left-
sided
weakness in
arm, facial
palsy,
dysarthria,
transient and
resolved after
15 minutes | NR | NR | NR | NR | Surgical | CEA | | NR | Appendix 1: Summary of studies included Abbreviations - CAS - Carotid Artery Stenting; CaW - Carotid Web; CEA - Carotid Artery Stenting; DAPT - Dual Antiplatelet Therapy; DOAC - Direct Oral Anticoagulant; F - Female; IQR - Interquartile range; M - Male; NIHSS - National Institutes of Health Stroke Scale; NR - Not Reported; SAPT - Single antiplatelet therapy; SD - Standard Deviation; TIA - Transient Ischaemic Attack