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Introduction 
Machine learning (ML) is moving decisively from 
concept to clinic-adjacent evaluation in vascular 
medicine. Peripheral arterial disease (PAD) has 
become one of the most active application areas 
for ML because its complex heterogeneous 
presentation and high clinical and economic 
burden make it well suited to data-driven 
approaches for earlier detection and personalised 
risk assessment. The core promise remains 
unchanged: algorithms that learn patterns across 
multimodal data, notes, vital signs, laboratories, 
vascular laboratory waveforms, CT and MR 
angiography, intravascular imaging, prescriptions 
and longitudinal outcomes can help detect 
disease earlier, stratify risk more reliably and 
match treatment to patient and lesion 
characteristics. The crucial question for vascular 
surgeons is where that promise stands today. 
Across diagnostics, risk stratification and outcome 
prediction, AI/ML is best regarded as a maturing 
adjunct whose best-performing tools are either in 
retrospective or quasi-prospective evaluation, with 
a small but growing body of external validation. 
The field is now constrained less by raw model 
accuracy and more by generalisability, clinical 
integration, explainability and governance.  
 
Diagnostics 
Diagnostic applications have produced some of 
the most tangible early gains. Electronic health 
record phenotyping and natural language 
processing have the potential to flag probable 
PAD from codes, medication patterns, 
laboratories and free-text notes with performance 
that is sufficient to support targeted ankle–
brachial pressure index (ABPI) or vascular 
laboratory testing in primary care and diabetes 

clinics.1–3 Real-world implementation work has 
started to define how such models can be 
integrated into care pathways; qualitative and 
mixed-methods studies emphasise workflow 
alignment, clinician trust and equity monitoring as 
prerequisites for sustained use.4,5 In the vascular 
laboratory, algorithms to classify continuous wave 
Doppler and plethysmography waveforms are 
increasingly accurate in laboratory settings and 
can reduce inter-operator variability, although 
prospective evidence of the impact on diagnostic 
accuracy or throughput remains limited.6–9 In 
imaging, deep learning for CT angiographic 
segmentation and stenosis quantification 
continues to advance quickly, with several groups 
reporting automated arterial tree segmentation, 
calcium scoring, runoff quantification and lesion 
severity classification, particularly in the femoro-
popliteal and infrapopliteal beds.10–14 These 
systems show high agreement with expert readers 
on retrospective datasets, but cross-scanner and 
cross-centre robustness and prospective clinical 
utility are still in the process of being established.    

Intravascular imaging is benefiting from ML 
originally developed for coronaries –plaque 
component detection and calcium quantification 
on intravascular ultrasound and optical coherence 
tomography – and early peripheral applications 
suggest feasibility for reproducible measurements 
that could guide vessel preparation and device 
selection. However, PAD-specific clinical 
validation and device-agnostic performance 
remain works in progress.15,16 Outside of imaging 
suites, photoplethysmography captured by 
smartphones and wearable devices has shown 
proof-of-concept for PAD screening, but large-
scale prospective studies in target populations, 
with confirmatory testing and cost-effectiveness 
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analyses, are still awaited before routine clinical adoption can be 
recommended.17–19 Taken together, diagnostic AI for PAD is moving 
from promising retrospective accuracy to early-stage clinical 
evaluation. In the near term, adoption is best directed towards tasks 
with outputs that are directly verifiable at the point of care such as 
waveform classification, stenosis measurements and structured 
report extraction, while simultaneously building the implementation 
evidence base. 
 
Risk stratification 
Risk stratification for both major adverse cardiovascular events and 
major adverse limb events is central to PAD care, and this is an 
area where ML has achieved clinically meaningful performance on 
large registries and multi-institutional datasets. Recent studies using 
the Vascular Quality Initiative and other consortia demonstrate that 
ML can estimate 30-day and long-term risks of major adverse limb 
events, amputation, reintervention, wound healing failure and major 
adverse cardiovascular events with very good discrimination and 
improved calibration relative to traditional scores.20 Multicentre 
registry analyses that have trained and tested models to predict 
short-term and long-term adverse outcomes after endovascular 
interventions report reasonable performance and calibration, and 
highlighting the need for external validation and clinically actionable 
risk outputs and models for bypass outcomes similarly show 
promise, although device- and conduit-specific heterogeneity, 
centre effects and missingness in key variables such as runoff 
continue to challenge generalisation.21–26 At this stage, selective 
deployment of validated models to inform shared decision-making 
and surveillance planning is appropriate provided calibration is 
satisfactory, probabilities are communicated transparently and local 
performance has been verified. Subgroup performance should be 
reported and shown to be acceptable in view of well-established 
disparities in PAD presentation and outcomes. 
 
Early and delayed outcome prediction  
Beyond risk stratification, AI/ML is increasingly used for granular 
outcome prediction tied to procedural planning and follow-up. Peri-
procedural complications such as contrast-associated kidney injury, 
bleeding and access site problems have been modelled with 
encouraging retrospective performance.27 Looking further out, 
lesion-specific models that incorporate CTA features, duplex 
metrics and lesion morphology are being developed to predict 
primary patency and target lesion revascularisation, with several 
reports demonstrating strong internal performance but mixed 
external validation.28,29 Wound healing prediction, a particularly 
relevant domain for chronic limb threatening ischaemia and 
multidisciplinary limb salvage teams, has been studied using a mix 
of clinical features, perfusion measurements and wound images. 
While multiple groups report models with good discrimination, the 
literature remains fragmented by small sample sizes, 
heterogeneous definitions of healing and limited external testing.   
In the absence of interpretable models and standardised endpoints, 

routine use is not yet justified.30,31 There is an emerging consensus 
that prediction models deliver greatest value when coupled to 
modifiable actions – for example, earlier duplex surveillance in 
patients at heightened restenosis risk and targeted optimisation of 
perfusion and infection control when healing probability is low, with 
prospective impact evaluations now a priority. 
 
Current work around the world 
Globally, research is converging on three practical directions. First, 
registry-linked modelling on major analogous datasets is yielding 
models that can be externally validated and benchmarked across 
systems, with increasing attention to calibration, decision-curve 
analysis and net benefit.32 Second, imaging AI is being 
standardised, with communities working on shared tasks for CTA 
segmentation and lesion scoring to improve reproducibility across 
vendors and scanners, and on explainable overlays that let 
clinicians see which image regions drive a classification. Third, 
privacy-preserving training such as federated learning is being 
piloted to overcome data sharing barriers while improving model 
generalisability across diverse populations and devices.33 Notably, 
in comparative evaluations, ML systems have outperformed 
clinicians, demonstrating higher discrimination and lower prediction 
error than expert assessment or conventional risk scores, moving 
the field a step closer to reliable adjunctive decision support at the 
point of care.34 Operationally, clinical deployment is best 
underpinned by multicentre validation, adoption of standardised 
data models and terminology to streamline collaboration and, when 
feasible, federated methods to promote diversity and equity. 
 
Explainable AI 
In clinical decision support, explainability refers to making the 
rationale behind a model’s predictions transparent and clinically 
interpretable, both for individual cases (why this result was 
produced for this patient) and at a broader level (how the system 
generally reasons and what factors influence its outputs). 
Practically, this allows us to see which variables or image regions 
most influenced a risk estimate, judge whether the rationale aligns 
with the patient’s presentation, and decide when to accept, qualify 
or override the recommendation.35 Explainability is now recognised 
as a safety requirement rather than a research feature. It underpins 
safe deployment by enabling clinicians to verify outputs, identify 
potential model errors and maintain accountability in decision-
making. For structured (tabular) clinical prediction models, local 
explanations such as SHAP value summaries, Local Interpretable 
Model-agnostic Explanations (LIME) plots36 and global feature 
importance analyses have become standard practice in recent 
high-quality studies and clinical pilots, enabling clinicians to 
understand why the model assigns a high risk label to a particular 
patient.37 For imaging, saliency maps and attention overlays have 
matured to the point that they can highlight stenotic segments or 
plaque components that informed the output. Tools intended for 
bedside use should display their confidence and calibration 
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characteristics, provide example-level explanations and defer to 
interpretable models when they perform equivalently.32 It is also 
recommended that ongoing performance monitoring be in place to 
detect drift and inequities. A ‘near-miss’ reporting culture around AI 
recommendations, akin to pharmacovigilance, is an emerging 
recommendation more broadly, so failures are learned from and 
shared.38 
 
AI governance 
Regulatory and institutional governance has advanced materially in 
the past two years. This reflects a shift from voluntary principles to 
enforceable mechanisms for AI assurance and post-market 
oversight. The US FDA finalised guidance on Predetermined 
Change Control Plans for AI-enabled device software functions in 
late 2024, clarifying how iterative model updates can be managed 
within an approved framework, and subsequently integrated that 
guidance into its AI/ML SaMD resources in 2025.39 These updates 
clarify regulator expectations for adaptive algorithms and 
continuous learning systems, which have historically faced 
uncertainty under fixed-approval pathways. Internationally and in 
the UK, Good Machine Learning Practice principles jointly 
articulated by regulators provide direction on data management, 
training/validation and human factors. Together, these principles 
emphasise transparency, reproducibility and clinician accountability 
across the AI lifecycle. At the institutional level, it is recommended 
that model deployment be overseen by multidisciplinary committees 
including vascular surgery, data science, ethics, legal, IT security 
and patient representatives. Such committees serve as local 
assurance bodies, ensuring that governance responsibilities are 
shared rather than delegated solely to data science teams. 
Documentation such as model cards should specify intended use, 
data provenance, performance across subgroups, known failure 
modes and update cadence. Explicit traceability between data, 
model versions and deployment environments should be 
maintained to support audit and incident review. For continuously 
learning systems, versioning, change control and re-approval 
triggers are essential so that the tool in clinic matches the tool that 
was validated. It is also recommended that local monitoring assess 
equity, alert burden and clinical workflow effects, with the authority 
to pause or retire models when harms outweigh benefits.40,41 
Embedding these practices establishes a feedback loop between 
technical governance and clinical safety, aligning local oversight 
with emerging regulatory expectations. 
 
Adjunct role in practice 
Clinician expertise remains central, and the most appropriate 
framing today is that AI/ML is an adjunct. This framing reinforces 
clinical accountability and aligns with current regulatory guidance 
that mandates human oversight for all high-risk AI systems. In 
diagnostics, it is recommended that algorithms pre-screen and 
double-check while examination, bedside Doppler and ABPI/TBPI 
remain foundational. Early evidence suggests that such hybrid 

workflows preserve diagnostic accuracy while reducing clinician 
workload and variability. Beyond specialist settings, dynamic ML 
models embedded in community and primary care records have 
shown promise in identifying high risk PAD patients in real time, 
enabling prioritisation for assessment and treatment.42 In shared 
decision-making, individualised risk estimates expressed as natural 
frequencies and simple visuals can help patients understand trade-
offs between limb salvage strategies, surveillance intensity and the 
burden of therapy. Presenting outputs in interpretable formats also 
helps maintain informed consent and patient trust in AI-supported 
decisions. In stratification, consistent risk labels across teams, 
vascular surgery, podiatry, wound care, cardiology, can coordinate 
care so that high-risk patients receive timely interventions. 
Interoperability and shared data standards are key to ensuring that 
such risk stratification remains consistent across systems and 
institutions. Across the continuum, AI/ML can reinforce risk factor 
management by identifying patients likely to benefit from statin 
adherence, supervised exercise therapy, smoking cessation 
support, glycaemic optimisation and foot care education; it is 
recommended that these digital nudges be embedded within 
clinician-led pathways to ensure accountability and equity. In this 
configuration, AI functions as a precision-enabling layer within 
clinician-led pathways, amplifying preventive care rather than 
displacing professional judgement. 
 
Pitfalls: black box, equity, and overfitting 
The most common pitfalls are now well documented. Black box 
models may latch onto spurious correlates such as scanner 
signatures, site effects or documentation quirks, which collapse 
when deployed elsewhere.43 Overfitting to single-centre datasets 
remains common, as does inadvertent data leakage that inflates 
performance.44 Equity concerns are prominent because PAD 
disproportionately affects patients with diabetes, chronic kidney 
disease and socioeconomic disadvantage; subgroup performance 
gaps can widen existing disparities. For these reasons, it is 
recommended that studies prespecify cohorts, strictly separate 
training and testing by patient and time, and perform external 
validation across sites, devices and populations. Calibration should 
be reported alongside discrimination, and decision-curve analyses 
should make net benefit explicit. Bias mitigation strategies, 
reweighting, balanced sampling, threshold adjustment and fairness-
aware evaluation are recommended and should be transparently 
reported.45 Automation bias and deskilling are human factor risks; it 
is recommended that interfaces display rationale and uncertainty 
and that clinicians stay in the loop for interpretation and override.46 
Embedding these safeguards converts technical validation into 
operational safety, ensuring models remain trustworthy under real-
world conditions. 
 
Reporting and appraisal guidelines 
Methodological rigour is improving, supported by new and updated 
guidance. Collectively, these frameworks mark a shift from ad-hoc 
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study descriptions to structured auditable evidence standards for 
clinical AI. TRIPOD+AI provides harmonised reporting standards for 
prediction model studies regardless of whether regression or ML is 
used.47 DECIDE-AI outlines how to report early clinical evaluation of 
AI decision support.48 The STARD-AI guideline addresses 
diagnostic accuracy studies using AI.49 PROBAST+AI updates the 
risk-of-bias and applicability assessment for prediction models built 
with regression or ML.50 For randomised evaluations, CONSORT-AI 
and SPIRIT-AI remain the standards.51,52 Within vascular surgery, 
uptake of these frameworks by authors, reviewers and editors will 
promote faster translation by strengthening reproducibility, 
comparability and clinical relevance. Their consistent adoption will 
also streamline regulatory submissions and evidence reviews for  
AI-enabled vascular tools. 
 
Conclusion 
The state of AI for PAD in 2025 can be summarised as robust 
feasibility with islands of readiness. Diagnostic support tools for 
waveform interpretation and CTA quantification are technically 
mature and entering early clinical evaluation, with adoption 
recommended where outputs are transparent and verifiable. Risk 
stratification for major adverse limb events, major adverse cardiac 
events, amputation and reintervention is strong enough to support 
shared decision-making and surveillance planning in many settings, 
provided that external validation and calibration are documented 
locally. Wound healing predictions show promise but require larger, 

standardised and prospective evaluations before widespread use is 
recommended. Explainability, governance and equity 
considerations have moved to the forefront, aided by clearer 
regulatory pathways and stronger reporting and appraisal 
guidelines. The immediate trajectory is towards measured 
monitored deployment with clear assessment of evidence of benefit 
across outcomes, experience and value. With appropriate 
safeguards, vascular surgery services are well positioned to 
introduce targeted AI tools as adjuncts, helping to standardise 
decisions, personalise treatment and remedy gaps in diagnosis and 
long-term follow-up for PAD. 
 

Conflict of Interest: None. 
 
Funding: None. 
 
References 
1. Afzal N, Mallipeddi VP, Sohn S, et al. Natural language processing of clinical 

notes for identification of critical limb ischemia. Int J Med Inform 2018;111:
83–9. https://doi.org/10.1016/j.ijmedinf.2017.12.024 

2. Dev S, Zolensky A, Aridi HD, et al. Use of deep learning to identify peripheral 
arterial disease cases from narrative clinical notes. J Surg Res 2024;303:
699–708. https://doi.org/10.1016/j.jss.2024.09.062  

3. Weissler EH, Zhang J, Lippmann S, Rusincovitch S, Henao R, Jones WS. The use 
of natural language processing to improve identification of patients with peripheral 
artery disease. Circ Cardiovasc Interv 2020;13(10):e009447. 
https://doi.org/10.1161/CIRCINTERVENTIONS.120.009447 

4. Singer SJ, Kellogg KC, Galper AB, Viola D. Enhancing the value to users of 
machine learning-based clinical decision support tools: a framework for iterative, 
collaborative development and implementation. Health Care Manage Rev 2022; 
47(2):E21–31. https://doi.org/10.1097/HMR.0000000000000324 

5. Wang SM, Hogg HDJ, Sangvai D, et al. Development and integration of machine 
learning algorithm to identify peripheral arterial disease: multistakeholder 
qualitative study. JMIR Form Res 2023;7(1):e43963. 
https://doi.org/10.2196/43963 

6. Merouche S, Allard L, Montagnon E, Soulez G, Bigras P, Cloutier G. A robotic 
ultrasound scanner for automatic vessel tracking and three-dimensional 
reconstruction of B-mode images. IEEE Trans Ultrason Ferroelectr Freq Control 
2016;63(1):35–46. https://doi.org/10.1109/TUFFC.2015.2499084 

7. Luo X, Ara L, Ding H, Rollins D, Motaganahalli R, Sawchuk AP. Computational 
methods to automate the initial interpretation of lower extremity arterial Doppler 
and duplex carotid ultrasound studies. J Vasc Surg 2021;74(3):988–996.e1. 
https://doi.org/10.1016/j.jvs.2021.02.050 

8. Allen J, Liu H, Iqbal S, Zheng D, Stansby G. Deep learning-based 
photoplethysmography classification for peripheral arterial disease detection:             
a proof-of-concept study. Physiol Meas 2021;42(5):054002. 
https://doi.org/10.1088/1361-6579/abf9f3 

9. Kim S, Hahn JO, Youn BD. Detection and severity assessment of peripheral 
occlusive artery disease via deep learning analysis of arterial pulse waveforms: 
proof-of-concept and potential challenges. Front Bioeng Biotechnol 2020;8:720. 
https://doi.org/10.3389/fbioe.2020.00720 

10. Mistelbauer G, Morar A, Schernthaner R, et al. Semi-automatic vessel detection 
for challenging cases of peripheral arterial disease. Comput Biol Med 2021;133: 
104344. https://doi.org/10.1016/j.compbiomed.2021.104344 

11. Dai L, Zhou Q, Zhou H, et al. Deep learning-based classification of lower extremity 
arterial stenosis in computed tomography angiography. Eur J Radiol 2021;136: 
109528. https://doi.org/10.1016/j.ejrad.2021.109528  

12. Hong W, Kang J, Kim SE, et al. Deep learning-based diagnosis of femoropopliteal 
artery steno-occlusion using maximum intensity projection images of CT 
angiography. Tomography 2025;11(9):104. 
https://doi.org/10.3390/tomography11090104 

13. Pomozi E, Quintero-Peña C, Csore J, et al. Innovations in MRI and AI integration 
for vascular plaque evaluation and overview of deep learning techniques in 
peripheral vascular disease. Methodist Debakey Cardiovasc J 2025;21(5):71–80. 
https://doi.org/10.14797/mdcvj.1642 

• Machine learning has the potential to support 
management of peripheral arterial disease by flagging 
patients at risk, standardising diagnostic interpretation 
and providing individualised estimates of limb and 
cardiovascular outcomes. The most mature tools are 
adjuncts that fit within existing workflows. Adoption 
should focus on transparent verifiable outputs that link 
to clear actions and measurable benefits now. 

• Safety and accountability depend on explainability, 
calibration and continuous monitoring. Tools used 
clinically should show why a prediction was made, 
expose uncertainty and perform acceptably across 
subgroups. Governance is essential: version control, 
change management, incident reporting and 
multidisciplinary oversight help detect drift, reduce bias 
and protect patients and staff alike. 

• The next phase should include measured monitored 
deployment. Priorities include multicentre validation, 
common data standards, pragmatic impact studies 
and clinician centred design. Dynamic models in 
community records can prioritise high risk patients for 
timely assessment and treatment. When implemented 
responsibly, these tools have the potential to 
standardise care, personalise therapy and improve 
patient experience and outcomes. 

KEY MESSAGES



Machine learning in the management of PAD. Ravindhran & Thakker 

JOURNAL OF VASCULAR SOCIETIES GREAT BRITAIN & IRELAND

EDITORIAL

14. Salvi A, Shah R, Higgins L, Menon PG. Vision transformers for AI-driven 
classification of peripheral artery disease from maximum intensity projections of 
runoff CT angiograms. Proceedings 2022 IEEE International Conference on 
Bioinformatics and Biomedicine (BIBM 2022) 2022;3870–2. Available from: 2022 
IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2022) 
(Table of Contents) 

15. Pinna A, Boi A, Mannelli L, et al. Machine learning for coronary plaque 
characterization: a multimodal review of OCT, IVUS, and CCTA. Diagnostics 
2025;15(14):1822. https://doi.org/10.3390/diagnostics15141822 

16. Putra RPP, Sembiring YE. Artificial intelligence and advanced vascular imaging: 
emerging tools for precision in peripheral arterial disease management.   
J Neonatal Surg 2025;14(23s):824–31. Available from: 
https://www.jneonatalsurg.com/index.php/jns/article/view/5195 

17. Allen J, Hedley S, Rajala S, et al. Deep learning-based photoplethysmography 
classification for peripheral arterial disease detection: a proof-of-concept study. 
Physiol Meas 2021;42(5):054002. Available from: 
https://iopscience.iop.org/article/10.1088/1361-6579/abf9f3 

18. Kim KB, Baek HJ. Photoplethysmography in wearable devices: a comprehensive 
review of technological advances, current challenges, and future directions. 
Electronics 2023;12:2923.  https://doi.org/10.3390/electronics12132923 

19. Ahmad RUS, Khan WU, Khan MS, Cheung P. Emerging rapid detection methods 
for the monitoring of cardiovascular diseases: Current trends and future 
perspectives. Mater Today Bio 2025;32:101663.  
https://doi.org/10.1016/j.mtbio.2025.101663 

20. Ravindhran B, Ubhi L, Nazir S, Pymer S. A systematic review and meta-analysis of 
machine learning models in the prediction of adverse outcomes in peripheral 
arterial disease. Br J Surg 2025;112(Suppl 6). 
https://doi.org/10.1093/bjs/znaf042.035 

21. Flores AM, Demsas F, Leeper NJ, Ross EG. Leveraging machine learning and 
artificial intelligence to improve peripheral artery disease detection, treatment, and 
outcomes. Circ Res 2021;128(12):1833–50. 
https://doi.org/10.1161/CIRCRESAHA.121.318224 

22. Li B, Aljabri B, Verma R, et al. Predicting outcomes following lower extremity 
endovascular revascularization using machine learning. J Am Heart Assoc 2024; 
13(9):e033194. https://doi.org/10.1161/JAHA.123.033194 

23. Li B, Verma R, Beaton D, et al. Predicting outcomes following open 
revascularization for aortoiliac occlusive disease using machine learning. J Vasc 
Surg 2023;78(6):1449-1460.e7. https://doi.org/10.1016/j.jvs.2023.07.006 

24. Li B, Eisenberg N, Beaton D, et al. Using machine learning to predict outcomes 
following suprainguinal bypass. J Vasc Surg 2024;79(3):593-608.e8.  
https://doi.org/10.1016/j.jvs.2023.09.037 

25. Li B, Eisenberg N, Beaton D, et al. Using machine learning (XGBoost) to predict 
outcomes after infrainguinal bypass for peripheral artery disease. Ann Surg 2024; 
279(4):705–13. https://doi.org/10.1097/SLA.0000000000006181  

26. Ravindhran B, Prosser J, Lim A, et al. Tailored risk assessment and forecasting in 
intermittent claudication. BJS Open 2024;8(1):zrad166. 
https://doi.org/10.1093/bjsopen/zrad166 

27. Cox M, Panagides JC, Di Capua J, et al. An interpretable machine learning model 
for the prevention of contrast-induced nephropathy in patients undergoing lower 
extremity endovascular interventions for peripheral arterial disease. Clin Imaging 
2023;101:1–7. https://doi.org/10.1016/j.clinimag.2023.05.011 

28. Li B, Warren BE, Eisenberg N, et al. Machine learning to predict outcomes of 
endovascular intervention for patients with PAD. JAMA Netw Open 2024;7(3): 
e242350. https://doi.org/10.1001/jamanetworkopen.2024.2350 

29. Goffart S, Delingette H, Chierici A, et al. Artificial intelligence techniques for 
prognostic and diagnostic assessments in peripheral artery disease: a scoping 
review. Angiology 2025. https://doi.org/10.1177/00033197241310572 

30. Squiers JJ, Thatcher JE, Bastawros DS, et al. Machine learning analysis of 
multispectral imaging and clinical risk factors to predict amputation wound 
healing. J Vasc Surg 2022;75(1):279–85. 
https://doi.org/10.1016/j.jvs.2021.06.478 

31. Chen MY, Cao MQ, Xu TY. Progress in the application of artificial intelligence in 
skin wound assessment and prediction of healing time. Am J Transl Res 2024; 
16(7):2765–76. https://doi.org/10.62347/MYHE3488  

32. Ravindhran B, Prosser J, Lim A, et al. Tailored risk assessment and forecasting in 
intermittent claudication: a proof of concept decision support tool. EJVES Vasc 
Forum 2024;62:S5. Available from: 
http://www.ejvesreports.com/article/S2666688X24001035/fulltext 

33. Rieke N, Hancox J, Li W, et al. The future of digital health with federated learning. 
NPJ Digit Med 2020;3(1):119. https://doi.org/10.1038/s41746-020-00323-1 

34. Ravindhran B, Cutteridge J, Pymer S, et al. Comparative performance of clinician 
and computational approaches in forecasting adverse outcomes in intermittent 
claudication. Ann Vasc Surg 2025;120:138–45.  
https://doi.org/10.1016/j.avsg.2025.05.009 

35. Abbas Q, Jeong W, Lee SW. Explainable AI in clinical decision support systems: 
a meta-analysis of methods, applications, and usability challenges. Healthcare 
2025;13(17):2154. https://doi.org/10.3390/healthcare13172154 

36. Ribeiro MT, Singh S, Guestrin C. ‘Why should I trust you?’ Explaining the 
predictions of any classifier. Proceedings of the ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining. 2016;1135–44. Available 
from: https://dl.acm.org/doi/pdf/10.1145/2939672.2939778 

37. Ali S, Abuhmed T, El-Sappagh S, et al. Explainable Artificial Intelligence (XAI): 
What we know and what is left to attain Trustworthy Artificial Intelligence. 
Information Fusion 2023;99:101805. 
https://doi.org/doi.org/10.1016/j.inffus.2023.101805 

38. Shaffer Shane T. AI incident reporting: Addressing a gap in the UK’s regulation of 
AI. 2024. Available from: https://www.longtermresilience.org/ 

39. Food and Drug Administration (FDA). Predetermined Change Control Plans for 
Medical Devices. 2024. Available from: https://www.fda.gov/regulatory-
information/search-fda-guidance-documents/predetermined-change-control-plan
s-medical-devices 

40. GOV.UK. Good Machine Learning Practice for Medical Device Development: 
Guiding Principles. 2021. Available from: 
https://www.gov.uk/government/publications/good-machine-learning-practice-for-
medical-device-development-guiding-principles/good-machine-learning-practice-f
or-medical-device-development-guiding-principles 

41. Final Document Good machine learning practice for medical device development: 
Guiding principles AUTHORING GROUP Artificial Intelligence/Machine Learning-
enabled Working Group Preface. 2025.  

42. Morris-Jarvis JA, Hatfield-Chetter G, Ravindhran B, et al. A dynamic neural 
network-based approach to identify high-risk patients with intermittent 
claudication. J Vasc Surg  2025;81(6):e94–5. 
https://doi.org/10.1016/j.jvs.2025.03.221  

43. Nicholson Price W. Big data and black-box medical algorithms. Sci Transl Med  
2018;10(471):eaao5333. https://doi.org/10.1126/scitranslmed.aao5333 

44. Aliferis C, Simon G. Overfitting, underfitting and general model overconfidence 
and under-performance pitfalls and best practices in machine learning and AI. 
2024;477–524. Available from: https://www.ncbi.nlm.nih.gov/books/NBK610560/ 

45. Hogan JW, Murthy VL. Model calibration, interpretability, and decision-making 
with AI-based risk scores. NEJM AI 2025;2(5). 
https://doi.org/10.1056/AIe2500297 

46. Abdelwanis M, Alarafati HK, Tammam MMS, Simsekler MCE. Exploring the risks 
of automation bias in healthcare artificial intelligence applications: a Bowtie 
analysis. J Safety Sci Resilience 2024;5(4):460–9. 
https://doi.org/10.1016/j.jnlssr.2024.06.001  

47. Collins GS, Moons KGM, Dhiman P, et al. TRIPOD+AI statement: updated 
guidance for reporting clinical prediction models that use regression or machine 
learning methods. BMJ 2024;385:e078378. https://doi.org/10.1136/bmj-2023-
078378 

48. Vasey B, Nagendran M, Campbell B, et al. Reporting guideline for the early stage 
clinical evaluation of decision support systems driven by artificial intelligence: 
DECIDE-AI. BMJ 2022;377:e070904. https://doi.org/10.1136/bmj-2022-070904 

49. Sounderajah V, Guni A, Liu X, et al. The STARD-AI reporting guideline for 
diagnostic accuracy studies using artificial intelligence. Nat Med 2025;31(10): 
3283–9. https://doi.org/10.1038/s41591-025-03953-8 

50. Moons KGM, Damen JAA, Kaul T, et al. PROBAST+AI: an updated quality, risk of 
bias, and applicability assessment tool for prediction models using regression or 
artificial intelligence methods. BMJ 2025;388:e082505. 
https://doi.org/10.1136/bmj-2024-082505 

51. Rivera SC, Liu X, Chan AW, Denniston AK, Calvert MJ. Guidelines for clinical 
trial protocols for interventions involving artificial intelligence: The SPIRIT-AI 
Extension. BMJ 2020;370:m3210. https://doi.org/10.1136/bmj.m3210  

52. Liu X, Cruz Rivera S, Moher D, et al. Reporting guidelines for clinical trial 
reports for interventions involving artificial intelligence: the CONSORT-AI 
extension. Nat Med 2020;26(9):1364–74.  
https://doi.org/10.1038/s41591-020-1034-x


