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Introduction

Machine learning (ML) is moving decisively from
concept to clinic-adjacent evaluation in vascular
medicine. Peripheral arterial disease (PAD) has
become one of the most active application areas
for ML because its complex heterogeneous
presentation and high clinical and economic
burden make it well suited to data-driven
approaches for earlier detection and personalised
risk assessment. The core promise remains
unchanged: algorithms that learn patterns across
multimodal data, notes, vital signs, laboratories,
vascular laboratory waveforms, CT and MR
angiography, intravascular imaging, prescriptions
and longitudinal outcomes can help detect
disease earlier, stratify risk more reliably and
match treatment to patient and lesion
characteristics. The crucial question for vascular
surgeons is where that promise stands today.
Across diagnostics, risk stratification and outcome
prediction, AI/ML is best regarded as a maturing
adjunct whose best-performing tools are either in
retrospective or quasi-prospective evaluation, with
a small but growing body of external validation.
The field is now constrained less by raw model
accuracy and more by generalisability, clinical
integration, explainability and governance.

Diagnostics

Diagnostic applications have produced some of
the most tangible early gains. Electronic health
record phenotyping and natural language
processing have the potential to flag probable
PAD from codes, medication patterns,
laboratories and free-text notes with performance
that is sufficient to support targeted ankle—
brachial pressure index (ABPI) or vascular
laboratory testing in primary care and diabetes

clinics.'® Real-world implementation work has
started to define how such models can be
integrated into care pathways; qualitative and
mixed-methods studies emphasise workflow
alignment, clinician trust and equity monitoring as
prerequisites for sustained use.*® In the vascular
laboratory, algorithms to classify continuous wave
Doppler and plethysmography waveforms are
increasingly accurate in laboratory settings and
can reduce inter-operator variability, although
prospective evidence of the impact on diagnostic
accuracy or throughput remains limited.® In
imaging, deep learning for CT angiographic
segmentation and stenosis quantification
continues to advance quickly, with several groups
reporting automated arterial tree segmentation,
calcium scoring, runoff quantification and lesion
severity classification, particularly in the femoro-
popliteal and infrapopliteal beds.*'* These
systems show high agreement with expert readers
on retrospective datasets, but cross-scanner and
cross-centre robustness and prospective clinical
utility are still in the process of being established.
Intravascular imaging is benefiting from ML
originally developed for coronaries —plaque
component detection and calcium quantification
on intravascular ultrasound and optical coherence
tomography — and early peripheral applications
suggest feasibility for reproducible measurements
that could guide vessel preparation and device
selection. However, PAD-specific clinical
validation and device-agnostic performance
remain works in progress.'>'® Outside of imaging
suites, photoplethysmography captured by
smartphones and wearable devices has shown
proof-of-concept for PAD screening, but large-
scale prospective studies in target populations,
with confirmatory testing and cost-effectiveness
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analyses, are still awaited before routine clinical adoption can be
recommended.’”~'® Taken together, diagnostic Al for PAD is moving
from promising retrospective accuracy to early-stage clinical
evaluation. In the near term, adoption is best directed towards tasks
with outputs that are directly verifiable at the point of care such as
waveform classification, stenosis measurements and structured
report extraction, while simultaneously building the implementation
evidence base.

Risk stratification

Risk stratification for both major adverse cardiovascular events and
major adverse limb events is central to PAD care, and this is an
area where ML has achieved clinically meaningful performance on
large registries and multi-institutional datasets. Recent studies using
the Vascular Quality Initiative and other consortia demonstrate that
ML can estimate 30-day and long-term risks of major adverse limb
events, amputation, reintervention, wound healing failure and major
adverse cardiovascular events with very good discrimination and
improved calibration relative to traditional scores.?® Multicentre
registry analyses that have trained and tested models to predict
short-term and long-term adverse outcomes after endovascular
interventions report reasonable performance and calibration, and
highlighting the need for external validation and clinically actionable
risk outputs and models for bypass outcomes similarly show
promise, although device- and conduit-specific heterogeneity,
centre effects and missingness in key variables such as runoff
continue to challenge generalisation.?'?¢ At this stage, selective
deployment of validated models to inform shared decision-making
and surveillance planning is appropriate provided calibration is
satisfactory, probabilities are communicated transparently and local
performance has been verified. Subgroup performance should be
reported and shown to be acceptable in view of well-established
disparities in PAD presentation and outcomes.

Early and delayed outcome prediction

Beyond risk stratification, AlI/ML is increasingly used for granular
outcome prediction tied to procedural planning and follow-up. Peri-
procedural complications such as contrast-associated kidney injury,
bleeding and access site problems have been modelled with
encouraging retrospective performance.?” Looking further out,
lesion-specific models that incorporate CTA features, duplex
metrics and lesion morphology are being developed to predict
primary patency and target lesion revascularisation, with several
reports demonstrating strong internal performance but mixed
external validation.?®2° Wound healing prediction, a particularly
relevant domain for chronic limb threatening ischaemia and
multidisciplinary limb salvage teams, has been studied using a mix
of clinical features, perfusion measurements and wound images.
While multiple groups report models with good discrimination, the
literature remains fragmented by small sample sizes,
heterogeneous definitions of healing and limited external testing.

In the absence of interpretable models and standardised endpoints,
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routine use is not yet justified.*®3' There is an emerging consensus
that prediction models deliver greatest value when coupled to
modifiable actions — for example, earlier duplex surveillance in
patients at heightened restenosis risk and targeted optimisation of
perfusion and infection control when healing probability is low, with
prospective impact evaluations now a priority.

Current work around the world

Globally, research is converging on three practical directions. First,
registry-linked modelling on major analogous datasets is yielding
models that can be externally validated and benchmarked across
systems, with increasing attention to calibration, decision-curve
analysis and net benefit.3? Second, imaging Al is being
standardised, with communities working on shared tasks for CTA
segmentation and lesion scoring to improve reproducibility across
vendors and scanners, and on explainable overlays that let
clinicians see which image regions drive a classification. Third,
privacy-preserving training such as federated learning is being
piloted to overcome data sharing barriers while improving model
generalisability across diverse populations and devices.** Notably,
in comparative evaluations, ML systems have outperformed
clinicians, demonstrating higher discrimination and lower prediction
error than expert assessment or conventional risk scores, moving
the field a step closer to reliable adjunctive decision support at the
point of care.* Operationally, clinical deployment is best
underpinned by multicentre validation, adoption of standardised
data models and terminology to streamline collaboration and, when
feasible, federated methods to promote diversity and equity.

Explainable Al

In clinical decision support, explainability refers to making the
rationale behind a model’s predictions transparent and clinically
interpretable, both for individual cases (why this result was
produced for this patient) and at a broader level (how the system
generally reasons and what factors influence its outputs).
Practically, this allows us to see which variables or image regions
most influenced a risk estimate, judge whether the rationale aligns
with the patient’s presentation, and decide when to accept, qualify
or override the recommendation.® Explainability is now recognised
as a safety requirement rather than a research feature. It underpins
safe deployment by enabling clinicians to verify outputs, identify
potential model errors and maintain accountability in decision-
making. For structured (tabular) clinical prediction models, local
explanations such as SHAP value summaries, Local Interpretable
Model-agnostic Explanations (LIME) plots® and global feature
importance analyses have become standard practice in recent
high-quality studies and clinical pilots, enabling clinicians to
understand why the model assigns a high risk label to a particular
patient.®” For imaging, saliency maps and attention overlays have
matured to the point that they can highlight stenotic segments or
plaque components that informed the output. Tools intended for
bedside use should display their confidence and calibration
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characteristics, provide example-level explanations and defer to
interpretable models when they perform equivalently.®? It is also
recommended that ongoing performance monitoring be in place to
detect drift and inequities. A ‘near-miss’ reporting culture around Al
recommendations, akin to pharmacovigilance, is an emerging
recommendation more broadly, so failures are learned from and
shared.®®

Al governance

Regulatory and institutional governance has advanced materially in
the past two years. This reflects a shift from voluntary principles to
enforceable mechanisms for Al assurance and post-market
oversight. The US FDA finalised guidance on Predetermined
Change Control Plans for Al-enabled device software functions in
late 2024, clarifying how iterative model updates can be managed
within an approved framework, and subsequently integrated that
guidance into its AI/ML SaMD resources in 2025.% These updates
clarify regulator expectations for adaptive algorithms and
continuous learning systems, which have historically faced
uncertainty under fixed-approval pathways. Internationally and in
the UK, Good Machine Learning Practice principles jointly
articulated by regulators provide direction on data management,
training/validation and human factors. Together, these principles
emphasise transparency, reproducibility and clinician accountability
across the Al lifecycle. At the institutional level, it is recommended
that model deployment be overseen by multidisciplinary committees
including vascular surgery, data science, ethics, legal, IT security
and patient representatives. Such committees serve as local
assurance bodies, ensuring that governance responsibilities are
shared rather than delegated solely to data science teams.
Documentation such as model cards should specify intended use,
data provenance, performance across subgroups, known failure
modes and update cadence. Explicit traceability between data,
model versions and deployment environments should be
maintained to support audit and incident review. For continuously
learning systems, versioning, change control and re-approval
triggers are essential so that the tool in clinic matches the tool that
was validated. It is also recommended that local monitoring assess
equity, alert burden and clinical workflow effects, with the authority
to pause or retire models when harms outweigh benefits. 404!
Embedding these practices establishes a feedback loop between
technical governance and clinical safety, aligning local oversight
with emerging regulatory expectations.

Adjunct role in practice

Clinician expertise remains central, and the most appropriate
framing today is that AI/ML is an adjunct. This framing reinforces
clinical accountability and aligns with current regulatory guidance
that mandates human oversight for all high-risk Al systems. In
diagnostics, it is recommended that algorithms pre-screen and
double-check while examination, bedside Doppler and ABPI/TBPI
remain foundational. Early evidence suggests that such hybrid
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workflows preserve diagnostic accuracy while reducing clinician
workload and variability. Beyond specialist settings, dynamic ML
models embedded in community and primary care records have
shown promise in identifying high risk PAD patients in real time,
enabling prioritisation for assessment and treatment.*2 In shared
decision-making, individualised risk estimates expressed as natural
frequencies and simple visuals can help patients understand trade-
offs between limb salvage strategies, surveillance intensity and the
burden of therapy. Presenting outputs in interpretable formats also
helps maintain informed consent and patient trust in Al-supported
decisions. In stratification, consistent risk labels across teams,
vascular surgery, podiatry, wound care, cardiology, can coordinate
care so that high-risk patients receive timely interventions.
Interoperability and shared data standards are key to ensuring that
such risk stratification remains consistent across systems and
institutions. Across the continuum, AlI/ML can reinforce risk factor
management by identifying patients likely to benefit from statin
adherence, supervised exercise therapy, smoking cessation
support, glycaemic optimisation and foot care education; it is
recommended that these digital nudges be embedded within
clinician-led pathways to ensure accountability and equity. In this
configuration, Al functions as a precision-enabling layer within
clinician-led pathways, amplifying preventive care rather than
displacing professional judgement.

Pitfalls: black box, equity, and overfitting

The most common pitfalls are now well documented. Black box
models may latch onto spurious correlates such as scanner
signatures, site effects or documentation quirks, which collapse
when deployed elsewhere.*® Overfitting to single-centre datasets
remains common, as does inadvertent data leakage that inflates
performance.* Equity concerns are prominent because PAD
disproportionately affects patients with diabetes, chronic kidney
disease and socioeconomic disadvantage; subgroup performance
gaps can widen existing disparities. For these reasons, it is
recommended that studies prespecify cohorts, strictly separate
training and testing by patient and time, and perform external
validation across sites, devices and populations. Calibration should
be reported alongside discrimination, and decision-curve analyses
should make net benefit explicit. Bias mitigation strategies,
reweighting, balanced sampling, threshold adjustment and fairness-
aware evaluation are recommended and should be transparently
reported.*® Automation bias and deskilling are human factor risks; it
is recommended that interfaces display rationale and uncertainty
and that clinicians stay in the loop for interpretation and override.*
Embedding these safeguards converts technical validation into
operational safety, ensuring models remain trustworthy under real-
world conditions.

Reporting and appraisal guidelines
Methodological rigour is improving, supported by new and updated
guidance. Collectively, these frameworks mark a shift from ad-hoc
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KEY MESSAGES

* Machine learning has the potential to support
management of peripheral arterial disease by flagging
patients at risk, standardising diagnostic interpretation
and providing individualised estimates of limb and
cardiovascular outcomes. The most mature tools are
adjuncts that fit within existing workflows. Adoption
should focus on transparent verifiable outputs that link
to clear actions and measurable benefits now.

« Safety and accountability depend on explainability,
calibration and continuous monitoring. Tools used
clinically should show why a prediction was made,
expose uncertainty and perform acceptably across
subgroups. Governance is essential: version control,
change management, incident reporting and
multidisciplinary oversight help detect drift, reduce bias
and protect patients and staff alike.

* The next phase should include measured monitored
deployment. Priorities include multicentre validation,
common data standards, pragmatic impact studies
and clinician centred design. Dynamic models in
community records can prioritise high risk patients for
timely assessment and treatment. When implemented
responsibly, these tools have the potential to
standardise care, personalise therapy and improve
patient experience and outcomes.

study descriptions to structured auditable evidence standards for
clinical Al. TRIPOD+AI provides harmonised reporting standards for
prediction model studies regardless of whether regression or ML is
used.*” DECIDE-AI outlines how to report early clinical evaluation of
Al decision support.“® The STARD-AI guideline addresses
diagnostic accuracy studies using Al.*® PROBAST+AI updates the
risk-of-bias and applicability assessment for prediction models built
with regression or ML.*° For randomised evaluations, CONSORT-AI
and SPIRIT-Al remain the standards."? Within vascular surgery,
uptake of these frameworks by authors, reviewers and editors will
promote faster translation by strengthening reproducibility,
comparability and clinical relevance. Their consistent adoption will
also streamline regulatory submissions and evidence reviews for
Al-enabled vascular tools.

Conclusion

The state of Al for PAD in 2025 can be summarised as robust
feasibility with islands of readiness. Diagnostic support tools for
waveform interpretation and CTA quantification are technically
mature and entering early clinical evaluation, with adoption
recommended where outputs are transparent and verifiable. Risk
stratification for major adverse limb events, major adverse cardiac
events, amputation and reintervention is strong enough to support
shared decision-making and surveillance planning in many settings,
provided that external validation and calibration are documented
locally. Wound healing predictions show promise but require larger,
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standardised and prospective evaluations before widespread use is
recommended. Explainability, governance and equity
considerations have moved to the forefront, aided by clearer
regulatory pathways and stronger reporting and appraisal
guidelines. The immediate trajectory is towards measured
monitored deployment with clear assessment of evidence of benefit
across outcomes, experience and value. With appropriate
safeguards, vascular surgery services are well positioned to
introduce targeted Al tools as adjuncts, helping to standardise
decisions, personalise treatment and remedy gaps in diagnosis and
long-term follow-up for PAD.
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